Slides available at http://rpubs.com/alecri/useR2019
Alessio Crippa
Karolinska Institutet
July 12th, 2019
Slides available at http://rpubs.com/alecri/useR2019
Characteristic | Traditional Trial | Platform trial |
---|---|---|
Aim | Efficacy of a single agent | Efficacy of multiple agents in heterogeneous population |
Duration | Finite (to answer one primary question) | Potentially long-term |
No. treatments | Generally limited | Multiple treatments; new agents may be introduced, other may leave |
Stopping rules | Interim analysis | Some treatments may be removed (efficacy/futility) but the trial continues |
Randomization | Fixed | Response-adaptive |
An outcome-adaptive randomized multi-arm biomarker driven trial in patients with metastatic castrate resistant prostate cancer (mCRPC)
Background
Multiplicity of available treatments for mCRPC and new therapies are expected to soon enrich the landscape of available therapies
Very heterogeneous response rates and increasing costs
Retrospective analyses have identified prognostic biomarkers. Could they be predictive as well?
How to optimize the treatment selection and identify the optimal sequencing of available therapies?
Primary objective | Investigate whether treatment decision based on biomarkers improves progression free survival (PFS) compared with standard of care. |
Secondary objectives | Investigate whether treatment decision based on biomarkers improves response rate at 2 months, time to PSA progression, time to radiographic progression, overall survival, quality of life, and health economy. In addition, we will compare adverse events. |
Design | Randomized platform trial. |
Study centers | Nation wide study (14 centers), interests from other Nordic countries, Belgium, and the UK. |
ARA | DRD | TP53 | TEfus | prev |
---|---|---|---|---|
32.4 | ||||
6.7 | ||||
17.1 | ||||
11.4 | ||||
6.7 | ||||
4.8 | ||||
1.9 | ||||
1.0 | ||||
4.8 | ||||
3.8 | ||||
1.0 | ||||
3.8 | ||||
2.9 | ||||
1.0 | ||||
1.0 |
Each patient belongs to one and only one biomarker subgroup combination, while he may belong to multiple biomarker signatures
signatures | —- | —+ | –+- | –++ | -+– | -+-+ | -++- | -+++ | +— | +–+ | +-+- | +-++ | ++– | ++-+ | +++- | prev |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
all | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 100.0 |
TP53- & AR- | X | X | X | X | 50.5 | |||||||||||
TP53+ | X | X | X | X | X | X | X | 37.1 | ||||||||
DRD+ | X | X | X | X | X | X | X | 19.0 | ||||||||
TEfus+ | X | X | X | X | X | X | X | 32.4 |
Patients are stratified based on their biomarker subgroup combination, and then randomized to either the control (standard of care) or one of the active arms
Outcome-adaptive randomization is implemented to assign more patients to more promising (effective) treatments within the biomarker subgroup combinations
Treatments are constantly (monthly) evaluated within the biomarker signatures
Highly effective treatments will graduate from the platform trial and enter into a validation trial (fixed randomization 1:1)
Patients who progress, will be re-genotyped and re-randomized (max 2 randomizations)
Fixed before enrolling 50 patients in the active arms
After, randomization probabilities will be updated monthly based on the accumulated data (PFS)
Proportional to , the (Bayesian) probability of superiority for a treatment in the biomarker subgroup combination :
Treatments are compared within the biomarker signatures of interest using the control group as comparator
the main outcome is a survival time. We will use Bayesian parametric model to contrast the distributions of PFS
Monthly, we will decide if continuing enrollment of new patients to a treatment signature combination, or to early stop (graduation, futility, max patients)
Control | Treatment |
---|---|
0.93, 1.15, 1.42, 2.55, 2.63, 2.87, 3.08, 3.97, 5.49, 5.81, 6.34, 6.43, 6.68, 6.95, 7.43, 7.43, 7.99, 8.69, 10.29, 10.88, 11.91, 16.88, 19.93, 20.00+, 20.00+ | 0.31, 0.48, 1.19, 2.66, 3.18, 3.89, 4.81, 5.23, 5.26, 5.62, 6.09, 6.78, 8.12, 8.46, 8.49, 10.51, 15.35, 17.06, 19.61, 20.00+, 20.00+, 20.00+, 20.00+, 20.00+, 20.00+ |
True PFS times
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel ---- 6.32 6.32 6.32 6.32 6.32 ---+ 6.32 6.32 6.32 6.32 6.32 --+- 6.32 6.32 6.32 6.32 6.32 --++ 6.32 6.32 6.32 6.32 6.32 -+-- 6.32 6.32 6.32 6.32 6.32 -+-+ 6.32 6.32 6.32 6.32 6.32 -++- 6.32 6.32 6.32 6.32 6.32 -+++ 6.32 6.32 6.32 6.32 6.32 +--- 6.32 6.32 6.32 6.32 6.32 +--+ 6.32 6.32 6.32 6.32 6.32 +-+- 6.32 6.32 6.32 6.32 6.32 +-++ 6.32 6.32 6.32 6.32 6.32 ++-- 6.32 6.32 6.32 6.32 6.32 ++-+ 6.32 6.32 6.32 6.32 6.32 +++- 6.32 6.32 6.32 6.32 6.32
Error rate
[1] 0.978 Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel 0.116 0.086 0.104 0.084 0.114
Average number of participants
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel all 153.1 156.2 146.1 144.1 149.3 TP53- & AR- 80.9 82.9 70.7 65.5 68.6 TP53+ 54.6 55.5 55.4 58.5 60.5 DRD+ 23.5 24.8 44.1 24.9 23.6 TEfus+ 46.8 47.5 47.4 52.0 53.4
Probabilities of superiority
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel all 0.39 0.40 0.40 0.38 0.40 TP53- & AR- 0.41 0.42 0.42 0.41 0.41 TP53+ 0.44 0.44 0.44 0.43 0.45 DRD+ 0.44 0.45 0.47 0.44 0.44 TEfus+ 0.43 0.43 0.44 0.42 0.43
Time to graduation
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel all 35.88 35.93 35.71 35.91 35.88 TP53- & AR- 34.22 34.64 34.85 35.05 34.73 TP53+ 35.73 35.70 35.57 35.81 35.54 DRD+ 35.93 35.94 35.67 35.95 35.96 TEfus+ 35.81 35.77 35.80 35.68 35.86
True PFS times
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel ---- 6.32 6.32 12.81 6.32 6.32 ---+ 6.32 6.32 12.81 6.32 6.32 --+- 6.32 6.32 12.81 6.32 6.32 --++ 6.32 6.32 12.81 6.32 6.32 -+-- 6.32 6.32 12.81 6.32 6.32 -+-+ 6.32 6.32 12.81 6.32 6.32 -++- 6.32 6.32 12.81 6.32 6.32 -+++ 6.32 6.32 12.81 6.32 6.32 +--- 6.32 6.32 12.81 6.32 6.32 +--+ 6.32 6.32 12.81 6.32 6.32 +-+- 6.32 6.32 12.81 6.32 6.32 +-++ 6.32 6.32 12.81 6.32 6.32 ++-- 6.32 6.32 12.81 6.32 6.32 ++-+ 6.32 6.32 12.81 6.32 6.32 +++- 6.32 6.32 12.81 6.32 6.32
Error rate
[1] 0.424 Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel 0.116 0.114 0.172 0.094 0.102
Power
[1] 0.806
Average number of participants
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel all 160.6 156.9 96.2 149.2 149.4 TP53- & AR- 85.6 82.4 45.2 67.7 66.1 TP53+ 56.1 55.3 38.2 60.2 61.6 DRD+ 25.6 26.2 30.4 25.3 25.1 TEfus+ 49.8 49.9 26.9 55.2 56.3
Probabilities of superiority
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel all 0.40 0.38 0.98 0.38 0.38 TP53- & AR- 0.41 0.41 0.96 0.40 0.39 TP53+ 0.44 0.42 0.88 0.42 0.44 DRD+ 0.44 0.44 0.90 0.43 0.42 TEfus+ 0.44 0.43 0.86 0.42 0.43
Time to graduation
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel all 35.83 35.78 20.38 35.71 35.83 TP53- & AR- 34.55 34.40 21.95 34.96 35.02 TP53+ 35.76 35.81 27.94 35.67 35.85 DRD+ 35.92 35.79 25.22 35.95 35.95 TEfus+ 35.72 35.84 31.20 35.68 35.54
True PFS times
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel ---- 6.32 6.32 5.11 6.32 6.32 ---+ 6.32 6.32 5.11 6.32 6.32 --+- 6.32 6.32 5.11 6.32 6.32 --++ 6.32 6.32 5.11 6.32 6.32 -+-- 6.32 6.32 15.13 6.32 6.32 -+-+ 6.32 6.32 15.13 6.32 6.32 -++- 6.32 6.32 15.13 6.32 6.32 -+++ 6.32 6.32 15.13 6.32 6.32 +--- 6.32 6.32 5.11 6.32 6.32 +--+ 6.32 6.32 5.11 6.32 6.32 +-+- 6.32 6.32 5.11 6.32 6.32 +-++ 6.32 6.32 5.11 6.32 6.32 ++-- 6.32 6.32 15.13 6.32 6.32 ++-+ 6.32 6.32 15.13 6.32 6.32 +++- 6.32 6.32 15.13 6.32 6.32
Error rate
[1] 0.334 Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel 0.106 0.112 0.054 0.092 0.096
Power
[1] 0.802
Average number of participants
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel all 163.0 162.7 101.1 151.6 150.3 TP53- & AR- 87.5 84.5 47.3 68.3 67.5 TP53+ 56.5 59.6 38.0 62.6 62.4 DRD+ 23.3 23.3 37.7 23.7 24.1 TEfus+ 49.0 49.0 35.9 53.4 54.1
Probabilities of superiority
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel all 0.39 0.40 0.82 0.38 0.39 TP53- & AR- 0.40 0.43 0.89 0.40 0.40 TP53+ 0.43 0.43 0.54 0.43 0.44 DRD+ 0.43 0.43 0.97 0.43 0.43 TEfus+ 0.42 0.43 0.65 0.42 0.43
Time to graduation
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel all 35.91 35.88 33.61 35.78 35.62 TP53- & AR- 34.40 34.46 32.05 35.16 34.99 TP53+ 35.66 35.80 35.85 35.90 35.63 DRD+ 35.93 35.86 21.30 35.90 35.96 TEfus+ 35.88 35.81 35.09 35.63 35.62
True PFS times
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel ---- 12.23 13.39 5.11 5.11 5.11 ---+ 12.23 13.39 5.11 16.85 16.85 --+- 5.11 5.11 5.11 5.11 5.11 --++ 5.11 5.11 5.11 16.85 16.85 -+-- 12.23 13.39 14.55 5.11 5.11 -+-+ 12.23 13.39 14.55 16.85 16.85 -++- 5.11 5.11 14.55 5.11 5.11 -+++ 5.11 5.11 14.55 16.85 16.85 +--- 5.11 5.11 5.11 5.11 5.11 +--+ 5.11 5.11 5.11 16.85 16.85 +-+- 5.11 5.11 5.11 5.11 5.11 +-++ 5.11 5.11 5.11 16.85 16.85 ++-- 5.11 5.11 14.55 5.11 5.11 ++-+ 5.11 5.11 14.55 16.85 16.85 +++- 5.11 5.11 14.55 5.11 5.11
Error rate
[1] 0.086 Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel 0.012 0.020 0.046 0.080 0.088
Power
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel 0.320 0.418 0.544 0.370 0.384
Average number of participants
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel all 164.0 164.2 114.0 119.1 121.1 TP53- & AR- 106.2 103.1 49.0 33.7 35.0 TP53+ 42.8 45.7 46.2 65.1 64.9 DRD+ 19.6 18.7 51.0 18.9 18.7 TEfus+ 34.4 33.0 36.0 61.4 63.0
Probabilities of superiority
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel all 0.20 0.24 0.41 0.54 0.55 TP53- & AR- 0.69 0.76 0.52 0.34 0.35 TP53+ 0.14 0.14 0.37 0.70 0.70 DRD+ 0.30 0.31 0.90 0.31 0.31 TEfus+ 0.21 0.22 0.29 0.88 0.89
Time to graduation
Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel all 35.86 35.84 35.80 35.91 35.74 TP53- & AR- 30.52 28.34 35.48 35.65 35.86 TP53+ 35.99 36.00 35.75 34.62 34.68 DRD+ 35.98 35.92 26.43 36.00 35.99 TEfus+ 35.92 35.97 35.87 30.00 29.95
is computed through MCMC
Simulated example dataset
Kaplan-Meier
km <- survfit(Surv(time_m, delta) ~ trt, data = dat_month) km Call: survfit(formula = Surv(time_m, delta) ~ trt, data = dat_month) n events median 0.95LCL 0.95UCL trt=Control 44 26 5.92 4.61 NA trt=Enzalutamide 12 7 9.71 5.76 NA trt=Abiraterone 8 5 6.11 2.46 NA trt=Carboplatin 31 15 17.86 10.47 NA trt=Cabazitaxel 8 7 3.19 1.28 NA trt=Docetaxel 13 8 6.97 3.41 NA
ggsurvplot(km)
Frequentist models
Cox model
fit_cox <- coxph(Surv(time_m, delta) ~ trt, data = dat_month) fit_cox Call: coxph(formula = Surv(time_m, delta) ~ trt, data = dat_month) coef exp(coef) se(coef) z p trtEnzalutamide -0.3 0.7 0.4 -0.7 0.466 trtAbiraterone 0.2 1.2 0.5 0.4 0.681 trtCarboplatin -1.1 0.3 0.3 -3.3 0.001 trtCabazitaxel 0.5 1.7 0.4 1.2 0.228 trtDocetaxel -0.1 0.9 0.4 -0.3 0.768 Likelihood ratio test=17 on 5 df, p=0.004 n= 116, number of events= 68
Parametric Weibull model
fit_w <- flexsurvreg(Surv(time_m, delta) ~ trt, data = dat_month, dist = "weibull") fit_w Call: flexsurvreg(formula = Surv(time_m, delta) ~ trt, data = dat_month, dist = "weibull") Estimates: data mean est L95% U95% se exp(est) shape NA 0.9405 0.7670 1.1532 0.0978 NA scale NA 8.7122 5.7824 13.1266 1.8221 NA trtEnzalutamide 0.1034 0.2755 -0.6129 1.1639 0.4533 1.3172 trtAbiraterone 0.0690 -0.2560 -1.2739 0.7620 0.5194 0.7742 trtCarboplatin 0.2672 1.1231 0.4398 1.8064 0.3486 3.0743 trtCabazitaxel 0.0690 -0.6130 -1.5024 0.2765 0.4538 0.5417 trtDocetaxel 0.1121 0.0913 -0.7514 0.9341 0.4300 1.0956 L95% U95% shape NA NA scale NA NA trtEnzalutamide 0.5418 3.2024 trtAbiraterone 0.2797 2.1425 trtCarboplatin 1.5524 6.0882 trtCabazitaxel 0.2226 1.3185 trtDocetaxel 0.4717 2.5450 N = 116, Events: 68, Censored: 48 Total time at risk: 831.8 Log-likelihood = -227.9, df = 7 AIC = 469.8
data { // number of gamma parameters int<lower=0> P; // data for censored subjects int<lower=0> N_m; matrix[N_m,P] X_m; vector[N_m] y_m; // data for observed subjects int<lower=0> N_o; matrix[N_o,P] X_o; vector[N_o] y_o; } parameters { vector[P] gamma; real<lower=0> alpha; } transformed parameters{ vector[N_m] gamma_m; vector[N_o] gamma_o; gamma_m = exp(X_m*gamma); gamma_o = exp(X_o*gamma); } model { gamma ~ normal(0, 100); alpha ~ exponential(1); // evaluate likelihood for censored and uncensored subjects target += weibull_lpdf(y_o | alpha, gamma_o); target += weibull_lccdf(y_m | alpha, gamma_m); } // generate posterior quantities of interest generated quantities{ real sigma; real lambda; vector[P-1] beta; vector[P-1] hr; vector[P-1] af; vector[P] mu; sigma = 1/alpha; mu[1] = exp(gamma[1])*tgamma(1 + alpha); lambda = exp(-gamma[1]*alpha); for (n in 1:(P-1)){ beta[n] = -gamma[n+1]*alpha; hr[n] = exp(-gamma[n+1]*alpha); af[n] = exp(gamma[n+1]); mu[n+1] = exp(gamma[1] + gamma[n+1])*tgamma(1 + alpha); } }
create_data_list <- function(event, time, formula, data){ return( list( N_m = sum(data[event] == 0), X_m = model.matrix(formula, data = data[data[, event] == 0, ]), y_m = data[data[, event] == 0, time], N_o = sum(data[event] == 1), X_o = model.matrix(formula, data = data[data[, event] == 1, ]), y_o = data[data[, event] == 1, time], P = ncol(model.matrix(formula, data = data[data[, event] == 1, ])) ) ) } d_list_x <- create_data_list(event = "delta", time = "time_m", formula = ~ trt, data = dat_month) str(d_list_x) List of 7 $ N_m: int 48 $ X_m: num [1:48, 1:6] 1 1 1 1 1 1 1 1 1 1 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:48] "3" "4" "6" "9" ... .. ..$ : chr [1:6] "(Intercept)" "trtEnzalutamide" "trtAbiraterone" "trtCarboplatin" ... ..- attr(*, "assign")= int [1:6] 0 1 1 1 1 1 ..- attr(*, "contrasts")=List of 1 .. ..$ trt: chr "contr.treatment" $ y_m: num [1:48] 20 20 19 19 19 19 18 17 17 17 ... $ N_o: int 68 $ X_o: num [1:68, 1:6] 1 1 1 1 1 1 1 1 1 1 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:68] "1" "2" "5" "7" ... .. ..$ : chr [1:6] "(Intercept)" "trtEnzalutamide" "trtAbiraterone" "trtCarboplatin" ... ..- attr(*, "assign")= int [1:6] 0 1 1 1 1 1 ..- attr(*, "contrasts")=List of 1 .. ..$ trt: chr "contr.treatment" $ y_o: num [1:68] 6.73 13.39 4.79 7.25 17.86 ... $ P : int 6
fit_v <- sampling(weibull_mod_x, data = d_list_x, chains = 4, iter = 6000, warmup = 1000, pars= c("gamma", "sigma", "lambda", "alpha", "beta", "hr", "af", "mu"), seed = 6494684) fit_v Inference for Stan model: 7ba39673c8164060800454620cc11679. 4 chains, each with iter=6000; warmup=1000; thin=1; post-warmup draws per chain=5000, total post-warmup draws=20000. mean se_mean sd 2.5% 25% 50% 75% 97.5% gamma[1] 2.20 0.00 0.23 1.78 2.04 2.19 2.35 2.68 gamma[2] 0.36 0.00 0.51 -0.59 0.00 0.33 0.68 1.40 gamma[3] -0.15 0.00 0.59 -1.21 -0.55 -0.18 0.22 1.11 gamma[4] 1.18 0.00 0.38 0.46 0.93 1.17 1.43 1.98 gamma[5] -0.57 0.00 0.51 -1.53 -0.92 -0.59 -0.24 0.47 gamma[6] 0.15 0.00 0.48 -0.75 -0.17 0.14 0.46 1.14 sigma 1.15 0.00 0.13 0.93 1.06 1.14 1.23 1.43 lambda 0.15 0.00 0.04 0.08 0.12 0.15 0.17 0.24 alpha 0.88 0.00 0.10 0.70 0.81 0.88 0.94 1.07 beta[1] -0.31 0.00 0.44 -1.21 -0.59 -0.29 0.00 0.51 beta[2] 0.13 0.00 0.51 -0.95 -0.19 0.16 0.48 1.06 beta[3] -1.03 0.00 0.33 -1.70 -1.25 -1.03 -0.81 -0.40 beta[4] 0.50 0.00 0.44 -0.40 0.21 0.52 0.80 1.32 beta[5] -0.13 0.00 0.41 -0.98 -0.40 -0.12 0.15 0.63 hr[1] 0.81 0.00 0.35 0.30 0.55 0.75 1.00 1.67 hr[2] 1.29 0.00 0.65 0.39 0.82 1.18 1.62 2.89 hr[3] 0.38 0.00 0.13 0.18 0.29 0.36 0.44 0.67 hr[4] 1.81 0.01 0.79 0.67 1.24 1.68 2.23 3.73 hr[5] 0.95 0.00 0.39 0.37 0.67 0.89 1.16 1.89 af[1] 1.64 0.01 1.13 0.55 1.00 1.40 1.98 4.07 af[2] 1.04 0.01 0.87 0.30 0.58 0.83 1.25 3.02 af[3] 3.52 0.01 1.48 1.59 2.52 3.23 4.17 7.26 af[4] 0.65 0.00 0.39 0.22 0.40 0.55 0.78 1.60 af[5] 1.31 0.01 0.73 0.47 0.84 1.14 1.58 3.11 mu[1] 8.89 0.02 2.13 5.65 7.40 8.60 10.03 13.90 mu[2] 13.85 0.07 8.52 5.52 8.96 12.01 16.48 32.47 mu[3] 8.82 0.06 6.66 2.86 5.12 7.16 10.49 24.12 mu[4] 29.73 0.07 10.10 16.28 22.86 27.72 34.37 55.05 mu[5] 5.44 0.02 2.92 2.14 3.56 4.76 6.48 12.92 mu[6] 11.08 0.04 5.50 4.74 7.53 9.81 13.15 24.95 lp__ -232.71 0.02 2.03 -237.54 -233.80 -232.35 -231.21 -229.84 n_eff Rhat gamma[1] 10027 1 gamma[2] 15507 1 gamma[3] 15235 1 gamma[4] 13149 1 gamma[5] 14718 1 gamma[6] 14800 1 sigma 19633 1 lambda 12862 1 alpha 19453 1 beta[1] 16009 1 beta[2] 15745 1 beta[3] 14002 1 beta[4] 14956 1 beta[5] 15282 1 hr[1] 16149 1 hr[2] 17326 1 hr[3] 13578 1 hr[4] 15726 1 hr[5] 15524 1 af[1] 11651 1 af[2] 11508 1 af[3] 12749 1 af[4] 13398 1 af[5] 13363 1 mu[1] 9892 1 mu[2] 13171 1 mu[3] 13238 1 mu[4] 20244 1 mu[5] 16479 1 mu[6] 16883 1 lp__ 7767 1 Samples were drawn using NUTS(diag_e) at Thu Jul 11 14:36:45 2019. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).
Compared to a frequentist model
WeibullReg(Surv(time_m, delta) ~ trt, data = dat_month) $formula Surv(time_m, delta) ~ trt $coef Estimate SE lambda 0.13056 0.03626 gamma 0.94049 0.09783 trtEnzalutamide -0.25910 0.42587 trtAbiraterone 0.24075 0.48970 trtCarboplatin -1.05624 0.32996 trtCabazitaxel 0.57649 0.42693 trtDocetaxel -0.08591 0.40430 $HR HR LB UB trtEnzalutamide 0.7717 0.3349 1.778 trtAbiraterone 1.2722 0.4872 3.322 trtCarboplatin 0.3478 0.1821 0.664 trtCabazitaxel 1.7798 0.7708 4.109 trtDocetaxel 0.9177 0.4155 2.027 $ETR ETR LB UB trtEnzalutamide 1.3172 0.5418 3.202 trtAbiraterone 0.7742 0.2797 2.142 trtCarboplatin 3.0743 1.5524 6.088 trtCabazitaxel 0.5417 0.2226 1.319 trtDocetaxel 1.0956 0.4717 2.545 $summary Call: survival::survreg(formula = formula, data = data, dist = "weibull") Value Std. Error z p (Intercept) 2.1647 0.2091 10.35 <2e-16 trtEnzalutamide 0.2755 0.4533 0.61 0.5433 trtAbiraterone -0.2560 0.5194 -0.49 0.6221 trtCarboplatin 1.1231 0.3486 3.22 0.0013 trtCabazitaxel -0.6130 0.4538 -1.35 0.1768 trtDocetaxel 0.0913 0.4300 0.21 0.8318 Log(scale) 0.0614 0.1040 0.59 0.5553 Scale= 1.06 Weibull distribution Loglik(model)= -227.9 Loglik(intercept only)= -236.7 Chisq= 17.69 on 5 degrees of freedom, p= 0.0034 Number of Newton-Raphson Iterations: 5 n= 116
traceplot(fit_v, c("gamma", "sigma", "alpha", "lambda", "beta", "hr", "af", "mu"))
mu_dat_v <- data.frame(rstan::extract(fit_v, "mu")$mu) colnames(mu_dat_v) <- levels(dat_month$trt) mu_dat_v %>% gather(var, mu) %>% ggplot(aes(mu, col = var)) + geom_line(stat = "density") + xlim(c(0, 30)) + labs(col = "Treatment", x = "Mean")
Probability of superiority
diff_mat <- apply(mu_dat_v[, -1], 2, function(x) x - mu_dat_v[, 1]) colMeans(diff_mat > 0) Enzalutamide Abiraterone Carboplatin Cabazitaxel Docetaxel 0.7525 0.3792 0.9992 0.1285 0.6163
Design of the study (simulations and operating characteristics)
Implementation of adaptive randomization
Interactive webapp for exemplification of ProBio
Interactive dashboard for continuous monitoring