Shiny’s Holy Grail

Interactivity with reproducibility

Joe Cheng (@jcheng)
useR!' 2019

Shiny: Interactive webapps in R

Shiny: Interactive webapps in R

Shiny: Interactive webapps in R

o Allow users to quickly explore different parameter values,
dimensions, models/algorithms

o Faster, more visceral iteration than modifying/rerunning a
traditional R script or R Markdown report/notebook

o Great for collaboration with domain experts with no R
expertise—no need for direct interaction with R

https://jcheng.shinyapps.io/shinymeta-user2019-demo1/

<> FH O B @ jcheng.shinyapps.io G . (7] B

Package name

sp

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 4054 6877 6462 8675 10677

Seven day rolling average

8000 -

3000 -

Jul 2018 Oct 2018 Jan 2019 Apr 2019 Jul 2019
date

@ jcheng.shinyapps.io i

000 <>

Package name

~

sf

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 1634 2322 2787 3936 19880

Seven day rolling average

Jul 2018 Oct 2018 Jan 2019 Apr 2019 Jul 2019
date

But something important is lost

But something important is lost

Interactive apps are powerful and convenient, but reproducibility
suffers (vs. R scripts or R Markdown reports)

https://shiny.rstudio.com/articles/bookmarking-state.html

But something important is lost

Interactive apps are powerful and convenient, but reproducibility
suffers (vs. R scripts or R Markdown reports)

e Outputs are transient and not inherently archivable (compared
to saving the PDF rendering from a report or script)

https://shiny.rstudio.com/articles/bookmarking-state.html

But something important is lost

Interactive apps are powerful and convenient, but reproducibility
suffers (vs. R scripts or R Markdown reports)

e Outputs are transient and not inherently archivable (compared
to saving the PDF rendering from a report or script)

e Reproducing analyses with Shiny is inconvenient: involves not
just running the app, but re-enacting the same user interactions

https://shiny.rstudio.com/articles/bookmarking-state.html

But something important is lost

Interactive apps are powerful and convenient, but reproducibility
suffers (vs. R scripts or R Markdown reports)

e Outputs are transient and not inherently archivable (compared
to saving the PDF rendering from a report or script)

e Reproducing analyses with Shiny is inconvenient: involves not
just running the app, but re-enacting the same user interactions

e Although bookmarking state is a thing

https://shiny.rstudio.com/articles/bookmarking-state.html

But something important is lost

Interactive apps are powerful and convenient, but reproducibility
suffers (vs. R scripts or R Markdown reports)

e Outputs are transient and not inherently archivable (compared
to saving the PDF rendering from a report or script)

e Reproducing analyses with Shiny is inconvenient: involves not
just running the app, but re-enacting the same user interactions

e Although bookmarking state is a thing

e When interactivity is not required or desired, the extra code
requirements of Shiny hinder source code clarity

https://shiny.rstudio.com/articles/bookmarking-state.html

The goal: interactivity + reproducibility

The goal: interactivity + reproducibility

1. First, use interactive app to find interesting results

The goal: interactivity + reproducibility

1. First, use interactive app to find interesting results

2. Then, click a button to view/download a reproducible artifact

The goal: interactivity + reproducibility

1. First, use interactive app to find interesting results

2. Then, click a button to view/download a reproducible artifact

The goal: interactivity + reproducibility

1. First, use interactive app to find interesting results

2. Then, click a button to view/download a reproducible artifact

(You could imagine any number of other ways of bridging

interactivity and reproducibility, but I’ll be focusing on this specific
combination for the rest of the talk.)

The goal: interactivity + reproducibility

Drug research and validation
Workflows benefit greatly from interactive apps, but analysis
ultimately needs to be provided in a fully reproducible form

Teaching
Interactive apps to teach statistical concepts, with corresponding
code snippets to teach usage in R

Gadgets/RStudio Add-ins

Use an interactive user interface to build e.g. a ggplot2 plot,
regular expression, or SQL query, then insert the corresponding
code into the Source editor

Reproducible artitacts

e View an R snippet

0O & IiSEE - interactive Summarized' X +

é

C

@ https://kevinrue.shinyapps.io/isee-shiny-contest/#

My code

* DGO ©

You can click anywhere in the code editor and select all the code using a keyboard shortcut that depends on your operating system (e.g. Ctrl/Cmd + A
followed by Ctrl/Cmd + C). This will copy the selected parts to the clipboard.

1
2
3
4
5
6
7
8
9

k# The following list of commands will generate the plots created in 1iSEE
Copy them into a script or an R session containing your SingleCellExperiment.
ALl commands below refer to your SingleCellExperiment object as “se’ .

se <- sce

colData(se)[, "sizeFactors(se)"] <- sizeFactors(se)
colormap <- ExperimentColorMap()

colormap <- synchronizeAssays(colormap, se)
all_coordinates <- list()

custom_data_fun <- NULL

custom_stat_fun <- NULL

T 3 2 T g 2 T2 i
Reduced dimension plot 1
T L T 2 T

red.dim <- reducedDim(se, 1);
plot.data <- data.frame(X = red.dim[, 1], Y = red.dim[, 2], row.names=colnames(se));
plot.data <- subset(plot.data, !'is.na(X) & !is.na(Y));

Saving data for transmission
all_coordinates[['redDimPlotl']] <- plot.data

Creating the plot

ggplot() +
geom_point(aes(x = X, y = Y), alpha = 1, plot.data, color="#000000', size=1) +
labs(x = "Dimension 1", y = "Dimension 2", title = "(1) PCA") +

ISEE

https://community.rstudio.com/t/shiny-contest-submission-isee-interactive-and-reproducible-exploration-and-visualization-of-genomics-data/25136

Reproducible artitacts

e View an R snippet

e Download standalone .Rmd or .R file

Tm\

report Rmd

Reproducible artitacts

e View an R snippet

e Download standalone .Rmd or .R file

e Download a .zip bundle with source .Rmd/.R, plus...?
e The outcome of running/rendering the source/script

e Data files or supporting source code (functions.R)

O\

data.csv

A report.pdf
o) report.Rmd

https://jcheng.shinyapps.io/shinymeta-user2019-demo2/

200 <|>I DO @& jcheng.shinyapps.io C . () § ()

Package name

sp

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 4054 6877 6462 8675 10677

Seven day rolling average

8000 -

3000 -

Jul 2018 Oct 2018 Jan 2019 Apr 2019 Jul 2019
date

& Download as report

0e00® < > DI, | @& jcheng.shinyapps.io Ea ' RO |

https://jcheng.shinyapps.io/shinymeta-user2019-demo2/ .
Package name
Sp
Min. 1st Qu. Median Mean 3rd Qu. Max.
0 4054 6877 6462 8675 10677
Seven day rolling average
8000 -
7000 -
6000 - L
E | BN sp
w000- <>] § MR TR~ O Of |3 v]|QsSearch
Favorites c 2 e
4000 - =222 TN L
@ Documents SN @
ﬁ Desktop sy PDF
3000 - T T S
| | <=+ Dropbox (RStudio) data.csv report.pdf report.Rmd
Jul 2018 Oct 2018

Dropbox (Personal)

&, Download as report Recents

Downloads

[@ m «

Development

Applications
@) AirDrop

au
~,

D

%

©)

Domain logic vs. reactive structure

Domain logic vs. reactive structure

e Domain logic is the essential analysis that our app embodies
(loading, data manipulation, modeling, visualization)

Domain logic vs. reactive structure

e Domain logic is the essential analysis that our app embodies
(loading, data manipulation, modeling, visualization)

e Reactive structure is the Shiny-specific server code that makes
that analysis interactive

Domain logic vs. reactive structure

e Domain logic is the essential analysis that our app embodies
(loading, data manipulation, modeling, visualization)

e Reactive structure is the Shiny-specific server code that makes
that analysis interactive

Shiny app development equals adding reactive structure to your
domain logic.

Domain logic vs. reactive structure

e Domain logic is the essential analysis that our app embodies
(loading, data manipulation, modeling, visualization)

e Reactive structure is the Shiny-specific server code that makes
that analysis interactive

Shiny app development equals adding reactive structure to your
domain logic.

Now we want to take a Shiny app and extract the domain logic
back out of the reactive structure.

Converting R script to Shiny

downloads <- cranlogs::cran _downloads("ggplot2",
from = Sys.Date() - 365, to = Sys.Date())

downloads rolling <- downloads 7%>7%
mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))

ggplot(downloads rolling, aes(date, count)) +
geom line() +
goetitle("Seven day rolling average")

Converting R script to Shiny

downloads <- reactive({
cranlogs::cran_downloads("ggplot2",
from = Sys.Date() - 365, to = Sys.Date())

1)

downloads rolling <- reactive({
downloads 7%>%
mutate(count

zoo: :rollapply(count, 7, mean, fill = "extend"))

1)

output$plot <- renderPlot({
ggplot(downloads rolling, aes(date, count)) +
geom line() +
gotitle("Seven day rolling average”)
})

Converting R script to Shiny

downloads <- reactive({
cranlogs::cran_downloads(input$packages,
from = Sys.Date() - 365, to = Sys.Date())

1)

downloads rolling <- reactive({
downloads () %>%
mutate(count

zoo: :rollapply(count, 7, mean, fill = "extend"))

1)

output$plot <- renderPlot({
gegplot(downloads rolling(), aes(date, count)) +
geom line() +
ggtitle("Seven day rolling average”)
})

Shiny app

downloads <- reactive({
cranlogs: :cran_downloads(input$packages,
from = Sys.Date() - 365, to = Sys.Date())

1)

downloads rolling <- reactive({
downloads() %>%
mutate(count

zoo: :rollapply(count, 7, mean, fill = "extend"))

1)

output$plot <- renderPlot({
gegplot(downloads rolling(), aes(date, count)) +
geom line() +
ggtitle("Seven day rolling average”)
})

Converting Shiny app to R script

downloads <- reacetivel{

cranlogs: :cran_downloads (irput$packages,
from = Sys.Date() - 365, to = Sys.Date())

H

downloads rolling <- reactivel{{
downloads{)} %>%

mutate(count

1>
sobauttedeat <« pondesplalb L0

gegplot(downloads rolling{), aes(date, count)) +
geom line() +
gotitle("Seven day rolling average”)

H

zoo: :rollapply(count, 7, mean, fill = "extend"))

Converting Shiny app to R script

downloads <- cranlogs::cran _downloads("dplyr",
from = Sys.Date() - 365, to = Sys.Date())

downloads rolling <- downloads 7%>7%
mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))

ggplot(downloads rolling, aes(date, count)) +
geom line() +
ggtitle("Seven day rolling average")

R script

downloads <- cranlogs::cran _downloads("dplyr",
from = Sys.Date() - 365, to = Sys.Date())

downloads rolling <- downloads 7%>%
mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))

ggplot(downloads rolling, aes(date, count)) +
geom line() +
goetitle("Seven day rolling average")

Approach 1: Copy and paste

Create and maintain two separate artifacts: Shiny app and R
Markdown report

o (3 Easy to understand
o (& Reproducible code is high fidelity
o & Two copies of code to keep in sync

o @ Will not work for more dynamic apps (i.e. not only changing
parameters, but changing instructions)

Approach 2: Lexical analysis

E.g. scriptgloss by Doug Kelkhoft

Automatically generate scripts from app source code, using static
analysis and heuristics

o (& Very easy to add to your app

o (& Few decisions to make (mostly just what outputs are
interesting)

o & Notall apps can be translated automatically

e @ Generated code is not “camera ready”—still contains code
relating only to Shiny structure

https://github.com/dgkf/scriptgloss

Approach 3: Programmatic

Use metaprogramming techniques to write code that serves dual
purposes (execute interactively, and export static code)

o (B Generated code is almost “camera ready”
o @ Flexible enough to handle highly dynamic Shiny apps
o @& Higher learning curve

o @& Significant effort to adapt existing apps

Introducing shinymeta
by Joe Cheng and Carson Sievert

shinymeta

shinymeta

This package is experimental
e Not tested by QA (yet)

e Function APl is still evolving

shinymeta

This package is experimental
e Not tested by QA (yet)

e Function APl is still evolving

“Scientists build to learn; Engineers learn to build.” —Fred Brooks

Using shinymeta

Using shinymeta

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

Using shinymeta

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

Using shinymeta

3. Atruntime, choose which pieces of domain logic to export,
and in what order

Using shinymeta

4. Present the code to the user (in a window, as a downloadable
script or report, etc.)

Using shinymeta

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

3. Atruntime, choose which pieces of domain logic to export,
and in what order

4. Present the code to the user (in a window, as a downloadable
script or report, etc.)

Using shinymeta

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

1. A new family of reactive objects

1. A new family of reactive objects

What was wrong with Shiny’s existing reactive objects?

1. A new family of reactive objects

What was wrong with Shiny’s existing reactive objects?

downloads <- reactive({
cranlogs: :cran _downloads(input$package,
from = Sys.Date() - 365, to = Sys.Date())

1)

1. A new family of reactive objects

What was wrong with Shiny’s existing reactive objects?

downloads <- reactive({
cranlogs: :cran _downloads(input$package,
from = Sys.Date() - 365, to = Sys.Date())

1)

e Call downloads () to retrieve the current dataset

1. A new family of reactive objects

What was wrong with Shiny’s existing reactive objects?

downloads <- reactive({
cranlogs: :cran _downloads(input$package,
from = Sys.Date() - 365, to = Sys.Date())

1)

e Call downloads () to retrieve the current dataset

e Automatically caches the result until input$package changes

1. A new family of reactive objects

What was wrong with Shiny’s existing reactive objects?

downloads <- reactive({
cranlogs: :cran _downloads(input$package,
from = Sys.Date() - 365, to = Sys.Date())

1)

e Call downloads () to retrieve the current dataset
e Automatically caches the result until input$package changes

e Works well for regular Shiny apps, BUT there’s no easy way for
us to get the code out

1. A new family of reactive objects

With shinymeta:

downloads <- metaReactive({
cranlogs: :cran _downloads(input$package,
from = Sys.Date() - 365, to = Sys.Date())

1)

e AmetaReactive does everything aregular reactive does, plus, can
give you its own source code at runtime

1. A new family of reactive objects

With shinymeta:

downloads <- metaReactive({
cranlogs: :cran _downloads(input$package,
from = Sys.Date() - 365, to = Sys.Date())

1)

> withMetaMode(downloads())
cranlogs::cran_downloads(input$package, from =

Sys.Date() - 365, to = Sys.Date())

1. A new family of reactive objects

With shinymeta: All code inside a metaReactive

block is considered domain logic

downloads <- metaReactive({
cranlogs: :cran_downloads(input$package,
from = Sys.Date() - 365, to = Sys.Date())

1)

> withMetaMode(downloads())
cranlogs::cran_downloads(input$package, from =

Sys.Date() - 365, to = Sys.Date())

1. A new family of reactive objects

reactive

observe

renderXXX

>
>
>

metaReactive
metaReactive?2

metaObserve
metaObserve2

metaRender
metaRender?2

1. A new family of reactive objects

metaReactive

metaReactive?2 ‘\\\\\\
-2 variants give

metaObserve
metaObserve2 / you more control

reactive »
observe »
renderXXX »

metaRender
metaRender?2

1. A new family of reactive objects

Sometimes metaReactive is too coarse-grained to separate our domain
logic from the Shiny stuft:

> downloads <- metaReactive({

+ req(input$package)

+ cranlogs::cran_downloads(input$package,

+ from = Sys.Date() - 365, to = Sys.Date())

+ 1)

> withMetaMode(dataset())

req(input$package)

cranlogs: :cran_downloads(input$package,
from = Sys.Date() - 365, to = Sys.Date())

1. A new family of reactive objects

Sometimes metaReactive is too coarse-grained to separate our domain
logic from the Shiny stuft:

> downloads <- metaReactive({
+ req(input$package)
cranlogs: :cran_downloads(input$package,

+ from = Sys.Date() - 365, to = Sys.Date())
Not domain logic + 1)

> withMetaMode(dataset())

req(input$package)

cranlogs: :cran_downloads(input$package,
from = Sys.Date() - 365, to = Sys.Date())

1. A new family of reactive objects

Use metaReactive?2 to tell shinymeta you don’t want the entire code
chunk, just the part you wrap with metaExpr() and return it

> downloads <- metaReactive2({

+ req(input$package)

+ metaExpr(cranlogs::cran downloads(input$package,
+ from = Sys.Date() - 365, to = Sys.Date()))

+ })

> withMetaMode(dataset())
cranlogs::cran_downloads(input$package,
from = Sys.Date() - 365, to = Sys.Date())

Shiny app

downloads <- reactive({
req(input$package)
cranlogs: :cran_downloads(input$package,
from = Sys.Date() - 365, to = Sys.Date())

1)

downloads rolling <- reactive({
downloads() %>%
mutate(count

zoo: :rollapply(count, 7, mean, fill = "extend"))

1)

output$plot <- renderPlot({
gegplot(downloads rolling(), aes(date, count)) +
geom line() +
ggtitle("Seven day rolling average”)
})

Shinymeta app (...almost)

downloads <- metaReactive2({
req(input$package)
metaExpr(cranlogs: :cran_downloads(input$package,
from = Sys.Date() - 365, to = Sys.Date()))

1)

downloads rolling <- metaReactive({
downloads() %>%
mutate(count

zoo: :rollapply(count, 7, mean, fill = "extend"))

1)

output$plot <- metaRender(renderPlot, {
gegplot(downloads rolling(), aes(date, count)) +
geom line() +
gotitle("Seven day rolling average”)
})

Shinymeta app (...almost)

downloads <- metaReactive2({
req(input$package)
metaExpr(cranlogs: :cran_downloads(input$package,
from = Sys.Date() - 365, to = Sys.Date()))

1)

downloads rolling <- metaReactive({
downloads() %>%

mutate(count zoo: :rollapply(count, 7, mean, fill = "extend"))

1)

output$plot <- metaRender(renderPlot, { This syntax is weird, sorry
gegplot(downloads rolling(), aes(date, count)) +
geom line() +
gotitle("Seven day rolling average”)
})

Using shinymeta

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

2. De-reference reactive values using !

Use !'! to replace some code with its value.

> downloads <- metaReactive2({

+ req(input$packages)

+ metaExpr(cranlogs::cran_downloads(input$package,
+ from = Sys.Date() - 365, to = Sys.Date()))

+ 1)

> withMetaMode(downloads())
cranlogs::cran_downloads(input$package,
from = Sys.Date() - 365, to = Sys.Date())

2. De-reference reactive values using !

Use !'! to replace some code with its value.

> downloads <- metaReactive2({

+ req(input$packages)

+ metaExpr(cranlogs::cran_downloads(input$package,
+ from = Sys.Date() - 365, to = Sys.Date()))

+ 1)

> withMetaMode(downloads())

cranlogs: :cran_downloads(input$package,
-Fr\om — SyS.D?-I-g/\ _ 2AaL +A — Crsiec NDA+A/ NN

We need the value of input$package here, not
literally input$package

2. De-reference reactive values using !

Use !'! to replace some code with its value.

Bang bang!
> downloads <- metaReactive2({
+ req(input$packages)

+ metaExpr(cranlogs::cran _downloads(!!input$package,
+ from = Sys.Date() - 365, to = Sys.Date()))
+ 1)

> withMetaMode(downloads())
cranlogs::cran_downloads("ggplot2",
from = Sys.Date() - 365, to = Sys.Date())

2. De-reference reactive exprs using !

2. De-reference reactive exprs using !

Besides inlining values, unquoting has a second essential function: inlining meta-
reactive objects as code

2. De-reference reactive exprs using !

Besides inlining values, unquoting has a second essential function: inlining meta-
reactive objects as code

downloads <- metaReactive({
cranlogs::cran_downloads(!!input$package,
from = Sys.Date() - 365, to = Sys.Date())

+ + + v

1)

2. De-reference reactive exprs using !

Besides inlining values, unquoting has a second essential function: inlining meta-
reactive objects as code

> downloads <- metaReactive({

+ cranlogs::cran_downloads(!!input$package,

+ from = Sys.Date() - 365, to = Sys.Date())
+ })

downloads rolling <- metaReactive({
downloads() %>% mutate(
count = zoo::rollapply(count, 7, mean, fill = "extend"))

+ + + v

1)

2. De-reference reactive exprs using !

Besides inlining values, unquoting has a second essential function: inlining meta-
reactive objects as code

downloads <- metaReactive({
cranlogs::cran_downloads(!!input$package,
from = Sys.Date() - 365, to = Sys.Date())

+ + + v

1)

downloads rolling <- metaReactive({
downloads() %>% mutate(
count = zoo::rollapply(count, 7, mean, fill = "extend"))

+ + + v

1)

> withMetaMode(downloads rolling())
downloads() %>% mutate(
count = zoo::rollapply(count, 7, mean, fill = "extend"))

2. De-reference reactive exprs using !

Besides inlining values, unquoting has a second essential function: inlining meta-
reactive objects as code

> downloads <- metaReactive({

+ cranlogs::cran_downloads(!!input$package,

+ from = Sys.Date() - 365, to = Sys.Date())
+ })

> downloads rolling <- metaReactive({

| ldownloads () %>% mutate(
count = zoo::rollapply(count, 7, mean, fill =

"extend"))
+ })

> withMetaMode(downloads rolling())
downloads() %>% mutate(
count = zoo::rollapply(count, 7, mean, fill = "extend"))

2. De-reference reactive exprs using !

Besides inlining values, unquoting has a second essential function: inlining meta-
reactive objects as code

> downloads <- metaReactive({

+ cranlogs::cran_downloads(!!input$package,

+ from = Sys.Date() - 365, to = Sys.Date())
+ })

> downloads rolling <- metaReactive({

| ldownloads () %>% mutate(
count = zoo::rollapply(count, 7, mean, fill =

"extend"))
+ })

> withMetaMode(downloads rolling())
1
cranlogs::cran_downloads("ggplot2",
from = Sys.Date() - 365, to = Sys.Date())
} %>% mutate(

r-ariindtE — 2Aan° *rAlT1annlvil rAalint 7 moaan F111 — "Aavand"))

Shinymeta app (...almost)

downloads <- metaReactive2({
req(input$packages)
metaExpr(cranlogs: :cran _downloads(input$packages,
from = Sys.Date() - 365, to = Sys.Date()))

1)

downloads rolling <- metaReactive({
downloads() %>%
mutate(count

zoo: :rollapply(count, 7, mean, fill = "extend"))

1)

output$plot <- metaRender(renderPlot, {
gegplot(downloads rolling(), aes(date, count)) +
geom line() +
goetitle("Seven day rolling average”)
})

Shinymeta app

downloads <- metaReactive2({
req(input$packages)
metaExpr(cranlogs: :cran_downloads(!!input$packages,
from = Sys.Date() - 365, to = Sys.Date()))

1)

downloads rolling <- metaReactive({
' ldownloads() %>%
mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))

1)

output$plot <- metaRender(renderPlot, {
ggplot(!!downloads rolling(), aes(date, count)) +
geom line() +
goetitle("Seven day rolling average”)
})

Using shinymeta

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

3. Atruntime, choose which pieces of domain logic to export,
and in what order

4. Present the code to the user (in a window, as a downloadable
script or report, etc.)

3. Extract code from selected objects

As we’ve already seen, you can call meta-reactive objects within
withMetaMode () to extract their code.

downloads <- metaReactive({
cranlogs: :cran downloads(!!input$package,
from = Sys.Date() - 365, to = Sys.Date())
})

withMetaMode (downloads())
cranlogs::cran downloads("ggplot2",
from = Sys.Date() - 365, to = Sys.Date())

vV + + + Vv

3. Extract code from selected objects

As we’ve already seen, you can call meta-reactive objects within
withMetaMode () to extract their code.

But this was just for demo purposes—in most cases you’ll use a
smarter, higher-level function called expandChain().

wlthMetaMode

e When !l isapplied to input$xxx, the value is inlined.

e When !'! isapplied to ametaReactive read operation, the
corresponding code is inlined.

wlthMetaMode

e When !l isapplied to input$xxx, the value is inlined.

e When !'! isapplied to ametaReactive read operation, the
corresponding code is inlined.

expandChailn

e When !! isappliedto input$xxx, the valueisinlined.

e When !! isapplied to ametaReactive read operation, a new
variable is introduced if one doesn’t already exist.

Fxample Shinymeta app

downloads <- metaReactive2({

req(input$packages)
metaExpr(cranlogs: :cran_downloads(!!input$packages,
depends on from = Sys.Date() - 365, to = Sys.Date()))
})

downloads rolling <- metaReactive({
| ldownloads() %>%

mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))
depends on 1)

output$plot <- metaRender(renderPlot, {
gegplot(!!downloads rolling(), aes(date, count)) +
geom line() +
gotitle("Seven day rolling average”)
})

withMetaMode (output$plot())

ggplot(!!downloads_rolling(), aes(date, count)) +
geom_line() +
ggtitle("Seven day rolling average")

withMetaMode (output$plot())

ggplot({
Convert daily data to 7 day rolling average

| ldownloads() %>%
mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))
}, aes(date, count)) +
geom line() +
getitle("Seven day rolling average")

withMetaMode (output$plot())

ggplot({
Convert daily data to 7 day rolling average

| ldownloads() %>%
mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))
}, aes(date, count)) +
geom line() +
ggtitle("Seven day rolling average")

withMetaMode (output$plot())

ggplot({
Convert daily data to 7 day rolling average

{
Retrieve a year's worth of daily download data
cranlogs::cran _downloads("dplyr", from = Sys.Date() -
365, to = Sys.Date())
T %6>%
mutate(count
"extend"))
}, aes(date, count)) +
geom line() +
gogtitle("Seven day rolling average")

zoo: :rollapply(count, 7, mean, fill =

withMetaMode (output$plot())

ggplot({
Convert daily data to 7 day rolling average

{
Retrieve a year's worth of daily download data
cranlogs::cran_downloads("dplyr", from = Sys.Date() -
365, to = Sys.Date())
} %>%
mutate(count
"extend"))
}, aes(date, count)) +
geom line() +
goetitle("Seven day rolling average")

zoo: :rollapply(count, 7, mean, fill =

expandChain(output$plot())

gegplot(!!downloads rolling(), aes(date, count)) +
geom_line() + ggtitle("Seven day rolling average")

expandChain(output$plot())

ggplot(downloads rolling, aes(date, count)) +
geom_line() + ggtitle("Seven day rolling average")

expandChain(output$plot())

Convert daily data to 7 day rolling average
downloads rolling <- !!downloads() %>%

mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads rolling, aes(date, count)) +
geom_line() + ggtitle("Seven day rolling average")

expandChain(output$plot())

Convert daily data to 7 day rolling average
downloads rolling <- !!downloads() %>%

mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads rolling, aes(date, count)) +
geom_line() + ggtitle("Seven day rolling average")

expandChain(output$plot())

Convert daily data to 7 day rolling average
downloads rolling <- downloads %>%

mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads rolling, aes(date, count)) +
geom_line() + ggtitle("Seven day rolling average")

expandChain(output$plot())

Retrieve a year's worth of daily download data
downloads <- cranlogs::cran downloads("dplyr",
from = Sys.Date() - 365, to = Sys.Date())

Convert daily data to 7 day rolling average
downloads rolling <- downloads %>%

mutate(count = zoo::rollapply(count, 7, mean, fill =

"extend"))

ggplot(downloads rolling, aes(date, count)) +
geom_line() + ggtitle("Seven day rolling average")

expandChain(output$plot())

Retrieve a year's worth of daily download data
downloads <- cranlogs::cran downloads("dplyr",
from = Sys.Date() - 365, to = Sys.Date())

Convert daily data to 7 day rolling average
downloads rolling <- downloads 7%>7%

mutate(count = zoo::rollapply(count, 7, mean, fill =

"extend"))

ggplot(downloads rolling, aes(date, count)) +
geom_line() + ggtitle("Seven day rolling average")

expandChain(output$plot())

Retrieve a year's worth of daily download data
downloads <- cranlogs::cran downloads("dplyr",
from = Sys.Date() - 365, to = Sys.Date())

Convert daily data to 7 day rolling average
downloads rolling <- downloads 7%>7%

mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads rolling, aes(date, count)) +
geom_line() + ggtitle("Seven day rolling average")

As we expand meta-objects, we create a chain of
variable declarations that grows upwards

expandChain(output$plot())

Retrieve a year's worth of daily download data
downloads <- cranlogs::cran downloads("dplyr",
from = Sys.Date() - 365, to = Sys.Date())

Convert daily data to 7 day rolling average
downloads rolling <- downloads 7%>7%

mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads rolling, aes(date, count)) +
geom_line() + ggtitle("Seven day rolling average")

As we expand meta-objects, we create a chain of
variable declarations that grows upwards

expandChain(output$plot())

Retrieve a year's worth of daily download data
downloads <- cranlogs::cran _downloads("dplyr",
from = Sys.Date() - 365, to = Sys.Date())

Convert daily data to 7 day rolling average
downloads rolling <- downloads 7%>7%

mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads rolling, aes(date, count)) +
geom_line() + ggtitle("Seven day rolling average")

As we expand meta-objects, we create a chain of
variable declarations that grows upwards

Other teatures of expandChain

Other teatures of expandChain

e Canrender multiple meta objects, by passing multiple
arguments

Other teatures of expandChain

e Canrender multiple meta objects, by passing multiple
arguments

e Complex graphs of meta-reactive dependencies are
automatically turned into linear code, in the correct order; each
dependency object is inserted above the first object that
needed it

withMetaMode (output$plot())
withMetaMode (output$summary())

ggplot({
Convert daily data to 7 day rolling average

1
Retrieve a year's worth of daily download data
cranlogs::cran_downloads("dplyr", from = Sys.Date() - 365, to =
Sys.Date())
} %>%
mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))
}, aes(date, count)) +
geom _line() +
gotitle("Seven day rolling average")

summary ({
Retrieve a year's worth of daily download data
cranlogs::cran_downloads("dplyr", from = Sys.Date() - 365, to =
Sys.Date())
}$count)

expandChain(output$plot(), output$summary())

Retrieve a year's worth of daily download data
downloads <- cranlogs::cran downloads("dplyr",
from = Sys.Date() - 365, to = Sys.Date())

Convert daily data to 7 day rolling average
downloads rolling <- downloads 7%>7%

mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads rolling, aes(date, count)) +
geom_line() + ggtitle("Seven day rolling average")

summary (downloads$count)

Using shinymeta

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

3. Atruntime, choose which pieces of domain logic to export,
and in what order

4. Present the code to the user (in a window, as a downloadable
script or report, etc.)

4. Options tor presenting code to users

Use outputCodeButton() to add a button to a specific output

plotOutput("plot")

4. Options tor presenting code to users

Use outputCodeButton() to add a button to a specific output

outputCodeButton(plotOutput("plot"))

4. Options tor presenting code to users

Use outputCodeButton() to add a button to a specific output

<[> Show code

Seven day rolling average

30000 - A ﬂ

. \//\ W
E
-

&)
20000 -

/\[‘/\ |
15000 - M

4. Options for presenting code to users

Display code using displayCodeModal()

1
2
3
4
5
6
/
8

Library("ggplot2")
library("dplyr™)
Retrieve a year's worth of daily download data
downloads <- cranlogs: :cran_downloads("ggplot2", from = Sys.Date() - 365, to = Sys
Convert daily data to 7 day rolling average
downloads_rolling <- downloads %>%
mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))
ggplot(downloads_rolling, aes(date, count)) + geom_line() + ggtitle("Seven day ro

) Dismiss

4. Options tor presenting code to users

Download *.R script/*.Rmd report with downloadButton

Use buildScriptBundle or buildRmdBundle to dynamically
generate .zip bundles

re pO r't . Rmd @] report.Rmd

A s Q & Knit v 0~ 3 Insert ~ = Run ~

)

title: "CRAN download report: {{pkgname}}"
output: pdf_document

e
2

3

4 ——
5

6~ "~ {r setup, include=FALSE}
7 library(ggplot2)

8 library(dplyr)

g o

10

11~ ~ " "{r}

12 {{code}}

13

14

4. Options tor presenting code to users

Download *.R script/*.Rmd report with downloadButton

Use buildScriptBundle or buildRmdBundle to dynamically
generate .zip bundles

report.Rmd ®reorthme
& A Q. & Knit v o~ W insert ~ | 4 L = Run ~
1v —
2 title: "CRAN download report: {{pkgname}}"
3 output: pdf_document

4
5
6~ ~{r setup, include=FALSE}
7 library(ggplot2)

8 library(dplyr)

9 {{variables}}
10

11~ "~ {r}

12 {{code}}

13

% -

B

4. Options tor presenting code to users

Download *.R script/*.Rmd report with downloadButton

Use buildScriptBundle or buildRmdBundle to dynamically
generate .zip bundles

buildRmdBundle(
report template = "report.Rmd",
include files = list("data.csv" = downloads data),

vars = list(pkgname = input$package, code = code),
output zip path = out

)

Using shinymeta (recap)

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

3. Atruntime, choose which pieces of domain logic to export,
and in what order

4. Present the code to the user (in a window, as a downloadable
script or report, etc.)

Limitations and future directions

e Make expandChain extract input/reactive values as variables

e Formatting of generated code can improve

e In particular, insignificant whitespace within source code is
not preserved

e Compatibility with Shiny async (but should work great with
both bookmarking and modules already)

e So farwe’ve only looked at reproducing snapshots of app state,
not necessarily “lab notebook”-style why/how/what over
multiple iterations

Credits

e Special thanks to Adrian Waddell at Roche/Genentech, whose
(in-house) teal framework provided direct inspiration for
shinymeta

e Thanks to Doug Kelkhoff at Roche/Genentech, whose
scriptgloss package provided a valuable counterpoint

e Motivated by functionality built independently by many Shiny
users over the years, including Vincent Nijs (radiant); Eric Hare
and Andee Kaplan (intRo); Xiao Ni (Novartis); Eric Nantz (Eli
Lilly); Kevin Rue, Charlotte Soneson, Federico Marini, and Aaron
Lun (iSEE); Tyler Morgan Wall (skpr)

https://vnijs.github.io/radiant/
http://intro-stats.com
https://community.rstudio.com/t/shiny-contest-submission-isee-interactive-and-reproducible-exploration-and-visualization-of-genomics-data/25136
https://github.com/tylermorganwall/skpr

Thank you!

Package docs:
nttps://rstudio.github.io/shinymeta/

Slides and examples from this talk:
https://github.com/jcheng5/shinymeta-user2019-talk

https://rstudio.github.io/shinymeta/
https://github.com/jcheng5/shinymeta-user2019-talk

Appendix: Metaprogramming

What is metaprogramming?

What is metaprogramming?

Writing code that generates/manipulates code

What is metaprogramming?

Writing code that generates/manipulates code

Just like R has built-in objects and functions for working with
character data, numeric data, tabular data, etc...

What is metaprogramming?

Writing code that generates/manipulates code

Just like R has built-in objects and functions for working with
character data, numeric data, tabular data, etc...

...it also has built-in objects and functions for working with code!

What is metaprogramming?

Writing code that generates/manipulates code

Just like R has built-in objects and functions for working with
character data, numeric data, tabular data, etc...

...it also has built-in objects and functions for working with code!

Objects: symbols, calls, expressions

What is metaprogramming?

Writing code that generates/manipulates code

Just like R has built-in objects and functions for working with
character data, numeric data, tabular data, etc...

...it also has built-in objects and functions for working with code!
Objects: symbols, calls, expressions

Functions: quote(),as.symbol(),call(), substitute()

What is metaprogramming?

Writing code that generates/manipulates code

Just like R has built-in objects and functions for working with
character data, numeric data, tabular data, etc...

...it also has built-in objects and functions for working with code!

Objects: symbols, calls, expressions

Functions: quote(),as.symbol(),call(), substitute()

Functions in the rlang package: expr(), enexpr(), !!

What is metaprogramming?

Writing code that generates/manipulates code

Just like R has built-in objects and functions for working with
character data, numeric data, tabular data, etc...

...it also has built-in objects and functions for working with code!

Objects: symbols, calls, expressions

Functions: quote(),as.symbol(),call(), substitute()
Functions in the rlang package: expr(), enexpr(), !!

(We won’t attempt to cover all this today...)

Creating code objects using quote

dplyr::filter(diamonds, carat >= 3)

Creating code objects using quote

dplyr::filter(diamonds, carat >= 3)

S

Creating code objects using quote

dplyr::filter(diamonds, carat >= 3)

A tibble: 32 x 10

carat cut color clarity depth table price X y Z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
3.01 Premium I I1 62.7 58 8040 9.1 8.97 5.67
3.11 Fair J I1 65.9 57 9823 9.15 9.02 5.98
3.01 Premium F I1 62.2 56 9925 9.24 9.13 5.73
3.05 Premium E I1 60.9 58 10453 9.26 9.25 5.66
3.02 Fair I I1 65.2 56 10577 9.11 9.02 5.91
3.01 Fair H I1 56.1 62 10761 9.54 9.38 5.31
3.65 Fair H I1 67.1 53 11668 9.53 9.48 6.38
3.24 Premium H I1 62.1 58 12300 9.44 9.4 5.85
3.22 Ideal I I1 62.6 55 12545 9.49 9.42 5.92
3.5 Ideal H I1 62.8 57 12587 9.65 9.59 6.03
I'ows

.. with 22 more

Creating code objects using quote

‘dplyr::filter(diamonds, carat >= 3)"

Creating code objects using quote

‘dplyr::filter(diamonds, carat >= 3)"

S

Creating code objects using quote

‘dplyr::filter(diamonds, carat >= 3)"

\5 chr: dplyr::filter (.

Creating code objects using quote

quote(dplyr::filter(diamonds, carat >= 3))

Creating code objects using quote

quote(dplyr::filter(diamonds, carat >= 3))

S

Creating code objects using quote

quote(dplyr::filter(diamonds, carat >= 3))

\\\ﬁb> dplyr::filter(diamonds, carat >= 3)

Creating code objects using quote

quote(dplyr::filter(diamonds, carat >= 3))

\- () (Visualized using pryr: :call _tree())
\- ()
\-

\- dplyr

\- filter
\- diamonds
\- ()

\- >

\- carat

\- 3

Creating code objects using quote

quote(dplyr::filter(diamonds, carat >= 3))

\- () (Visualized using pryr::call _tree())
\- ()
\-
\- “dplyr
\- filter
\- “diamonds We can read and write nodes
\- () within this expression tree,
\- as if itis a list of lists
\- carat

\- 3

Creating code objects using ggete rlang::.expr

rlang: :expr(dplyr::filter(diamonds, carat >= 3))

\- ()
\- ()
\-

\- “dplyr
\- filter
\- ~diamonds We can read and write nodes
\- () within this expression tree,
\- > as if it is a list of lists
\- carat

\- 3

The unquoting operator (!!)

The unquoting operator (!!)

> min_carat <- 3

The unquoting operator (!!)

> min_carat <- 3

> rlang::expr(dplyr::filter(diamonds, carat >= min_carat))

The unquoting operator (!!)

> min_carat <- 3

> rlang::expr(dplyr::filter(diamonds, carat >= min_carat))

dplyr::filter(diamonds, carat >= min_carat)

The unquoting operator (!!)

> min_carat <- 3

> rlang::expr(dplyr::filter(diamonds, carat >= min_carat))

dplyr::filter(diamonds, carat >= min_carat)

> rlang::expr(dplyr::filter(diamonds, carat >= !Imin_carat))

The unquoting operator (!!)

> min_carat <- 3

> rlang::expr(dplyr::filter(diamonds, carat >= min_carat))

dplyr::filter(diamonds, carat >= min_carat)

> rlang::expr(dplyr::filter(diamonds, carat >= !Imin_carat))

dplyr::filter(diamonds, carat >= 3)

The unquoting operator (!!)

> min_carat <- 3

> rlang::expr(dplyr::filter(diamonds, carat >= min_carat))

dplyr::filter(diamonds, carat >= min_carat)

> rlang::expr(dplyr::filter(diamonds, carat >= !Imin_carat))

dplyr::filter(diamonds, carat >= 3)

Use the unquoting operator to selectively replace quoted
subexpressions (like min_carat) with their actual values

The unquoting operator (!!)

The unquoting operator (!!)

> min _carat <- quote(quantile(diamonds$carat, probs = 0.99))

The unquoting operator (!!)

> min _carat <- quote(quantile(diamonds$carat, probs = 0.99))

> rlang: :expr(dplyr::filter(diamonds, carat >= !!min carat))

The unquoting operator (!!)

> min _carat <- quote(quantile(diamonds$carat, probs = 0.99))

> rlang: :expr(dplyr::filter(diamonds, carat >= !!min carat))

dplyr::filter(diamonds, carat >= quantile(diamonds$carat,probs = 0.99))

The unquoting operator (!!)

> min _carat <- quote(quantile(diamonds$carat, probs = 0.99))

> rlang: :expr(dplyr::filter(diamonds, carat >= !!min carat))

dplyr::filter(diamonds, carat >= quantile(diamonds$carat,probs = 0.99))

Use the unquoting operator to selectively replace quoted
subexpressions (like min_carat) with other quoted expressions

Further reading

e That’s all we’ll need to know about metaprogramming for the
rest of this talk, but shinymeta works best if you have a solid
grasp on the following:

e Advanced R (Wickham) - chapters on Non-standard evaluation

and Expressions

e Thedplyrvignette Programming with dplyr, specifically the
section on quasiquotation

http://adv-r.had.co.nz/Computing-on-the-language.html
http://adv-r.had.co.nz/Computing-on-the-language.html
http://adv-r.had.co.nz/Expressions.html
https://dplyr.tidyverse.org/articles/programming.html
https://dplyr.tidyverse.org/articles/programming.html#quasiquotation

Kelly Bodwin

c @KellyBodwin

> stay up all night reading/writing about tidy eval
> drive to work

> this is, zero edits, what the sky looks like

Either | have finally lost my last marble, or the Universe is
an #rstats user.

O 150 10:22 AM - Jul 2, 2019

Q) 24 people are talking about this

