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Cluster analysis

@ The task of grouping a set of objects such that
e Obijects in the same group are as similar as possible and
e Objects in different groups are as dissimilar as possible.

@ The aim is to determine a partition of the given set of objects, e.g.,
to determine which objects belong to the same group and which to
different groups.

@ Statistical methods:

e Heuristic methods: hierarchical clustering, partitioning
methods (e.g., k-means).
e Model-based methods: finite mixture models.



Specifying the cluster problem

@ The cluster problem is in general perceived as ill defined.
@ Different notions of what defines a cluster exist:

e Compactness.

e Density-based levels.

e Connectedness.

e Functional similarity.

@ Several cluster solutions might exist for a given data set depending
on which notion is used.

@ The application context is important to define which clusters should
be targeted and to assess the usefulness of a clustering solution.
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Model-based clustering methods

@ Model-based clustering embeds the clustering problem in a
probabilistic framework.
@ This implies:
e Statistical inference tools can be used.
o Different cluster distributions can be used depending on the
cluster notion.
e More explicit specification of what defines a cluster required
than for heuristic methods.



Finite mixture models

@ Generative model for observations (y;, x;), i =1,...,m
@ Draw a cluster membership indicator S; from a multinomial
distribution with parameters n = (11, ..., 7k).

© Draw y; given x; and S; from the cluster distribution:
yilxi ~ fs,(yi[ ;).

@ The distribution of (y;, X;) is then given by

K
yilxi ~ > mih(yilxi),
k=1

where

o 7k >0forallkand S5, m = 1.
o fi() represents the cluster distribution.
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Methods differ with respect to:
@ Clustering kernel:
e Specification of cluster distributions.
e Use of additional variables x;, e.g., for regression.
@ Estimation framework:

o Maximum likelihood estimation.
e Bayesian estimation.
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@ Cluster membership indicators can be inferred using the
a-posteriori probabilities:
P(Si = klyi, i) o< nifi(yil Xi)-

@ A hard assignment can be obtained by

e Assigning to the cluster where this probability is maximum.
e Drawing from this probability distribution.
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Estimation of finite mixtures with fixed K

@ Maximum likelihood estimation:
e EM algorithm.
e General purpose optimizers.
e Hybrid approaches.
@ Bayesian estimation:
o MCMC sampling with data augmentation by adding S;,
i=1,....n
e General purpose Gibbs samplers can be used, e.g., JAGS
available in R through package rjags (Plummer, 2018).



EM algorithm

@ Standard maximum likelihood estimation method in a missing data
context.

@ Guaranteed to converge for bounded likelihoods.
@ Only convergence to a local optimum.

@ In general slow convergence behavior.

@ Consists of E- and M-step:

e E-step requires determining the a-posteriori probabilities.
e M-step requires weighted maximum likelihood estimation of
the cluster distributions.



MCMC sampling

@ Determination of the a-posteriori probabilities required to draw S;,
i=1,...,nfrom a multinomial distribution.

@ Conditionalon S;, i = 1, ..., ndrawing from the posterior of the
cluster-specific parameters is the same as if the cluster-specific
distribution is used for the complete data set.

@ Often poor mixing observed.

@ For symmetric priors the posterior is also symmetric and thus
multimodal.



Determining the number of clusters

@ No generally accepted solution available.
@ Suggested methods include:
e Information criteria: AIC, BIC, ICL.
e Likelihood ratio test with distribution under the null
determined using sampling methods.
e Marginal likelihoods in Bayesian estimation.



Clustering kernel

@ Components corresponding to clusters:
In general using parametric distributions for the components and
thus also for the clusters.

Multivariate continuous data.

Multivariate categorical data.

Multivariate mixed data.

Multivariate data with regression structure.

@ Combining components to clusters:
l.e., the cluster distributions are mixture distributions.
e Two-step procedures.
e Simultaneous estimation using constraints or informative
priors.

In the following these variants are investigated for maximum likelihood
estimation.



Multivariate continuous data

@ The standard model is a mixture of multivariate Gaussians.
@ The model-based clustering model is given by

K
Yi~ Y nkd(Vilx, Zio).
k=1

@ For K clusters and d-dimensional observations y; the number of
estimated parameters corresponds to

K-(d+d(d+1)/2)+K—1.
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@ Parsimonity is achieved based on the decomposition of the
variance-covariance matrix into

e Volume A
e Shape A
e Orientation D

given by
Y« = AcDkAD, .

@ 14 different models emerge by imposing different constraints on
the variance-covariance matrices within or across clusters.
@ Available packages in R, e.g.,
e mclust (Scrucca et al., 2016),
e mixture (Browne et al., 2018),
e Rmixmod (Lebret et al., 2015).
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@ Alternative approaches to achieve parsimonity are mixtures of
factor analyzers.
e E.g., package pgmm (McNicholas et al., 2018) in R.
@ If the cluster shapes are not symmetric and light tailed, alternative
cluster kernels are:
e (-distributions (e.g., package teigen; Andrews et al. 2018).
e Skewed and / or heavy tailed distributions: e.g.,

e mixsmsn (Prates et al., 2013),
o EMMIXcskew (Lee and McLachlan, 2018),
o MixSAL (Franczak et al., 2018).



Multivariate categorical data

@ Often also referred to as latent class analysis.

@ Clusters induce a dependency between variables, while variables
are independent within clusters.
= Local independency assumption.

@ The model-based clustering model is given by

K d
yi~> | [ Muttinomial(y;|m)

k=1 j=1

for d-dimensional observations.
@ Available packages in R: e.g.,

e poLCA (Linzer and Lewis, 2011)
e Rmixmod (Lebret et al., 2015)



Multivariate data with regression structure

@ Often also referred to as clusterwise regression.
@ The model-based clustering model is given by

K
yilxi ~ > it (yil (%), b).
k=1
@ Different regression models possible:
e Generalized linear models.
e Generalized linear mixed-effects models.
@ Available packages in R: e.g.,

e flexmix (Leisch, 2004; Griin and Leisch, 2008)
e mixtools (Benaglia et al., 2009)
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Combining components to clusters

@ Two-step procedures:
@ Fit a mixture model as semi-parametric tool for density
estimation.
© Combine components of the mixture model to form clusters
based on some criterion.
Available packages in R, e.g.:

e mclust uses entropy or connectedness of components as
criterion (Baudry et al., 2010; Scrucca, 2016).

e fpc (Hennig, 2019) provides several variants as proposed in
Hennig (2010).

@ Simultaneous estimation using informative priors in Bayesian

estimation can be used in combination with standard estimation
methods.



Post-processing tools

@ Inference on partitions.

@ Inference on cluster-specific parameters:
In particular for Bayesian estimation the label switching problem
needs to be resolved.

@ Assigning new observations to clusters:
Cluster predictions possible.

@ Assessing cluster quality.



Assessing cluster quality

@ Agreement measures between cluster assignments and true
classes available as in a supervised setting:

e Label-invariant measures:
e Rand index (corrected for agreement by chance).
e Jaccard index.
o Purity.

e Label-specific measures:
e Misclassification rate.

@ Available packages in R:
e Package clue (Hornik, 2005) provides general infrastructure

to assess cluster solutions:
Function c1_agreement provides several methods to assess

cluster agreement.



Package flexmix

@ Implements a general framework for the EM algorithm.

@ Assumes a mixture model for clustering where each component is
from the same parametric family.

@ Provides all data handling and the E-step to obtain the a-posteriori
probabilities of component assignments.

@ Users need to provide the M-step for specific mixture models.
@ Extensible to new types of mixture models, rapid prototyping.

@ General methods for fitting, inspecting and visualizing the mixture
models in a model-based clustering context.
@ Different available M-steps, e.g.,
e Mixtures of GLMs.

e Mixtures of linear mixed models (with censored data).
e Mixtures of linear additive models.



Mixtures of linear mixed models with censored data
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Mixtures of linear additive models
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Mixtures of Beta regression models
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Summary

@ Model-based clustering is a versatile method for clustering.
@ Different variants exist depending on

e Clustering kernel.
e Estimation methods.

@ Alarge number of R packages are available covering different
kinds of models.

@ For more information see the CRAN Task View: Cluster Analysis &
Finite Mixture Models:
https://CRAN.R-project.org/view=Cluster


https://CRAN.R-project.org/view=Cluster
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