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Cluster analysis

The task of grouping a set of objects such that

Objects in the same group are as similar as possible and
Objects in different groups are as dissimilar as possible.

The aim is to determine a partition of the given set of objects, e.g.,
to determine which objects belong to the same group and which to
different groups.

Statistical methods:

Heuristic methods: hierarchical clustering, partitioning
methods (e.g., k -means).
Model-based methods: finite mixture models.



Specifying the cluster problem

The cluster problem is in general perceived as ill defined.

Different notions of what defines a cluster exist:

Compactness.
Density-based levels.
Connectedness.
Functional similarity.

Several cluster solutions might exist for a given data set depending
on which notion is used.

The application context is important to define which clusters should
be targeted and to assess the usefulness of a clustering solution.
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Model-based clustering methods

Model-based clustering embeds the clustering problem in a
probabilistic framework.

This implies:

Statistical inference tools can be used.
Different cluster distributions can be used depending on the
cluster notion.
More explicit specification of what defines a cluster required
than for heuristic methods.



Finite mixture models

Generative model for observations (yi , xi), i = 1, . . . , n:
1 Draw a cluster membership indicator Si from a multinomial

distribution with parameters η = (η1, . . . , ηK ).
2 Draw yi given xi and Si from the cluster distribution:

yi |xi ∼ fSi (yi |xi).

The distribution of (yi , xi) is then given by

yi |xi ∼
K∑

k=1

ηk fk (yi |xi),

where

ηk ≥ 0 for all k and
∑K

k=1 ηk = 1.
fk () represents the cluster distribution.
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Methods differ with respect to:

Clustering kernel:

Specification of cluster distributions.
Use of additional variables xi , e.g., for regression.

Estimation framework:

Maximum likelihood estimation.
Bayesian estimation.



Finite mixture models / 3

Cluster membership indicators can be inferred using the
a-posteriori probabilities:

P(Si = k |yi , xi) ∝ ηk fk (yi |xi).

A hard assignment can be obtained by

Assigning to the cluster where this probability is maximum.
Drawing from this probability distribution.
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Estimation of finite mixtures with fixed K

Maximum likelihood estimation:

EM algorithm.
General purpose optimizers.
Hybrid approaches.

Bayesian estimation:

MCMC sampling with data augmentation by adding Si ,
i = 1, . . . , n.
General purpose Gibbs samplers can be used, e.g., JAGS
available in R through package rjags (Plummer, 2018).



EM algorithm

Standard maximum likelihood estimation method in a missing data
context.

Guaranteed to converge for bounded likelihoods.

Only convergence to a local optimum.

In general slow convergence behavior.

Consists of E- and M-step:

E-step requires determining the a-posteriori probabilities.
M-step requires weighted maximum likelihood estimation of
the cluster distributions.



MCMC sampling

Determination of the a-posteriori probabilities required to draw Si ,
i = 1, . . . , n from a multinomial distribution.

Conditional on Si , i = 1, . . . , n drawing from the posterior of the
cluster-specific parameters is the same as if the cluster-specific
distribution is used for the complete data set.

Often poor mixing observed.

For symmetric priors the posterior is also symmetric and thus
multimodal.



Determining the number of clusters

No generally accepted solution available.

Suggested methods include:

Information criteria: AIC, BIC, ICL.
Likelihood ratio test with distribution under the null
determined using sampling methods.
Marginal likelihoods in Bayesian estimation.



Clustering kernel

Components corresponding to clusters:
In general using parametric distributions for the components and
thus also for the clusters.

Multivariate continuous data.
Multivariate categorical data.
Multivariate mixed data.
Multivariate data with regression structure.

Combining components to clusters:
I.e., the cluster distributions are mixture distributions.

Two-step procedures.
Simultaneous estimation using constraints or informative
priors.

In the following these variants are investigated for maximum likelihood
estimation.



Multivariate continuous data

The standard model is a mixture of multivariate Gaussians.

The model-based clustering model is given by

yi ∼
K∑

k=1

ηkφ(yi |µk ,Σk ).

For K clusters and d-dimensional observations yi the number of
estimated parameters corresponds to

K · (d + d(d + 1)/2) + K − 1.



Multivariate continuous data / 2

Parsimonity is achieved based on the decomposition of the
variance-covariance matrix into

Volume λ
Shape A
Orientation D

given by

Σk = λk Dk Ak D>
k .

14 different models emerge by imposing different constraints on
the variance-covariance matrices within or across clusters.

Available packages in R, e.g.,

mclust (Scrucca et al., 2016),
mixture (Browne et al., 2018),
Rmixmod (Lebret et al., 2015).
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Alternative approaches to achieve parsimonity are mixtures of
factor analyzers.

E.g., package pgmm (McNicholas et al., 2018) in R.

If the cluster shapes are not symmetric and light tailed, alternative
cluster kernels are:

t-distributions (e.g., package teigen; Andrews et al. 2018).
Skewed and / or heavy tailed distributions: e.g.,

mixsmsn (Prates et al., 2013),
EMMIXcskew (Lee and McLachlan, 2018),
MixSAL (Franczak et al., 2018).



Multivariate categorical data

Often also referred to as latent class analysis.

Clusters induce a dependency between variables, while variables
are independent within clusters.
⇒ Local independency assumption.

The model-based clustering model is given by

yi ∼
K∑

k=1

ηk

 d∏
j=1

Multinomial(yij |πj
k )


for d-dimensional observations.

Available packages in R: e.g.,

poLCA (Linzer and Lewis, 2011)
Rmixmod (Lebret et al., 2015)



Multivariate data with regression structure

Often also referred to as clusterwise regression.

The model-based clustering model is given by

yi |xi ∼
K∑

k=1

ηk f (yi |µk (xi), φk ).

Different regression models possible:

Generalized linear models.
Generalized linear mixed-effects models.

Available packages in R: e.g.,

flexmix (Leisch, 2004; Grün and Leisch, 2008)
mixtools (Benaglia et al., 2009)



Multivariate data with regression structure / 2

1
1

1

1

1

11
1
11

1

1

1
1

1
1

1

1
1

1

1

1
1

1
1

1
22

11

1

1

1

1

1
11

1

112
2

2

2
222

2

2
2

2

222

2

2
2

2

2

2

222
2

2
222

22
2

2

2

2

2

2
2

2
2
2

33

3
3
3

3
3

3

3

33

3

3
3
3
3

3
3

3

33

3

3

3

3

3

3

3

33

3

33

3
3

3
3

3

3

3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−
−−−−−−−−−−−−−
−−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−
−−−−−−−−
−−−−−−−−
−−−−−−−−
−−−−−−−
−−−−−−−
−−−−−−−
−−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−
−−−−−−−−−−−−−
−−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−
−−−−−−−−
−−−−−−−−
−−−−−−−−
−−−−−−−
−−−−−−−
−−−−−−−
−−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−
−−−−−−−−−−−−−
−−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−
−−−−−−−−
−−−−−−−−
−−−−−−−−
−−−−−−−
−−−−−−−
−−−−−−−
−−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−

−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

X
2[

,2
]



Combining components to clusters

Two-step procedures:
1 Fit a mixture model as semi-parametric tool for density

estimation.
2 Combine components of the mixture model to form clusters

based on some criterion.

Available packages in R, e.g.:

mclust uses entropy or connectedness of components as
criterion (Baudry et al., 2010; Scrucca, 2016).
fpc (Hennig, 2019) provides several variants as proposed in
Hennig (2010).

Simultaneous estimation using informative priors in Bayesian
estimation can be used in combination with standard estimation
methods.



Post-processing tools

Inference on partitions.

Inference on cluster-specific parameters:
In particular for Bayesian estimation the label switching problem
needs to be resolved.

Assigning new observations to clusters:
Cluster predictions possible.

Assessing cluster quality.



Assessing cluster quality

Agreement measures between cluster assignments and true
classes available as in a supervised setting:

Label-invariant measures:

Rand index (corrected for agreement by chance).
Jaccard index.
Purity.

Label-specific measures:

Misclassification rate.

Available packages in R:

Package clue (Hornik, 2005) provides general infrastructure
to assess cluster solutions:
Function cl_agreement provides several methods to assess
cluster agreement.



Package flexmix

Implements a general framework for the EM algorithm.

Assumes a mixture model for clustering where each component is
from the same parametric family.

Provides all data handling and the E-step to obtain the a-posteriori
probabilities of component assignments.

Users need to provide the M-step for specific mixture models.

Extensible to new types of mixture models, rapid prototyping.

General methods for fitting, inspecting and visualizing the mixture
models in a model-based clustering context.

Different available M-steps, e.g.,

Mixtures of GLMs.
Mixtures of linear mixed models (with censored data).
Mixtures of linear additive models.



Mixtures of linear mixed models with censored data
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Mixtures of linear mixed models with censored data / 2
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Mixtures of linear additive models
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Mixtures of linear additive models / 2
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Mixtures of Beta regression models
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Mixtures of Beta regression models / 2
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Summary

Model-based clustering is a versatile method for clustering.

Different variants exist depending on

Clustering kernel.
Estimation methods.

A large number of R packages are available covering different
kinds of models.

For more information see the CRAN Task View: Cluster Analysis &
Finite Mixture Models:
https://CRAN.R-project.org/view=Cluster

https://CRAN.R-project.org/view=Cluster
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