
RcppGreedySetCover: Scalable Set Cover

Matthias Kaeding

RWI - Leibniz Institute for Economic Research / University Duisburg-Essen

Set cover problem

Input: S, collection of sets S1, . . . , Sn, covering U :

S1 ∪ S2 ∪ · · · ∪ Sn = U .

Output: Smallest subcollection from S, covering U .

Problem illustration

A B E F

C D E

A B C

B D

A B E F

C D E

input output

1

2

3

4

se
t

Set cover problem

• Fundamental problem in approximation algorithms with wide
ranging applications e.g. in location planning, shift-planning
and virus detection.
• Our application: Minimize number of hospitals, so that every
person in Germany can reach one hospital by car within 30
minutes.

RcppGreedySetCover

• Optimal solution available via linear programming but not
feasible for large problems.
• Alternative: Greedy approximation as implemented in

RcppGreedySetCover.
• Single function package. Fast due to data.table and Rcpp.

Greedy algorithm

• Input: S = {S1, . . . , Sn}.
• Initialize C ← {}, T ← S.
• Repeat the following steps until C is a cover of S:

1. Find the largest set of uncovered elements, say ∆.
2. C ← C ∪∆.
3. T ← {T1 \∆, . . . , Tn \∆}.

Properties of greedy algorithm

• Tradeoff: Bounded approximation error for speed / feasibility.
• Vazirani 2001, p. 17: “[. . .], for the minimum set cover
problem the obvious algorithm given above is essentially the
best one can hope for.”

Implementation

• Preprocessing in data.table: Associate elements and sets
with integers.
• Main part in C++ via Rcpp. Major advantage: Data structures

allowing fast lookup and resizing.

Data structures

• std::vector<std::unordered_set<int>> maps sets to
elements.

• O(1) cost for element access.

• std::unordered_map<int, std::unordered_set<int>>
maps elements to sets.

• O(1) average cost for access and removal.

Application: Data

population

[1,8)

[8,23)

[23,56)

[56,152)

[152,492)

[492,2.6e+04]

Application: Data

Drivetimes for every populated 1km2 grid in Germany within 40km
radius, excluding drivetimes > 30 minutes.

print(D[1:5, 1:3])

idm0 idm1 drivetime
1: 4031_3109 4032_3109 125.0
2: 4031_3109 4031_3110 157.2
3: 4031_3109 4032_3108 198.8
4: 4031_3109 4032_3111 298.7
5: 4031_3109 4034_3108 306.2

nrow(D) # Larger problem.

[1] 164114074

Application

• Input must be two column data.frame where the sets are in
the first, the elements in the second column.

library(RcppGreedySetCover) # Available on CRAN
system.time(

OUT <- greedySetCover(D[, c("idm0","idm1")])
)

100% covered by 867 sets.

user system elapsed
323.22 37.50 316.63

Application

• Output is analogous to input.

head(OUT)

idm0 idm1
1: 4041_3197 4041_3189
2: 4041_3197 4041_3190
3: 4041_3197 4042_3189
4: 4041_3197 4046_3199
5: 4041_3197 4052_3180
6: 4046_3075 4040_3086

Sanity check:
setequal(OUT$idm1, D$idm1)

[1] TRUE

Solution is a cover.

Application: Result

• Blue points mark hospitals. Populated grids in darkgrey.

Future improvements

• Speed up implementation.
• Reduce dependencies to Rcpp.
• Extend to weighted / capacitated set cover.

