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Bayesian Optimization context

Black-box model with multiple outputs:

f:xeXCcRY—=RP

Working hypotheses: f is expensive to compute, with complex
outputs:

» non-convex

» no derivatives available

» possible observation noise

> 2<p<20

> X is typically a box of dimension 2 < d < 100

Examples:

P engineering design applications
» hyperparameter tuning in Machine Learning



Multi-objective optimization
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Pareto front (ensemble of non—dominated solutions)
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Classical multi-objective algorithm goal: obtaining a “good”
discrete approximation of the set of non-dominated solutions
(Pareto set and front)



Bayesian optimization (BO) in a nutshell

BO: sequential design strategy based on a distribution over
functions to define an acquisition function.

Two ingredients:

» fast surrogate (or metamodel) of the objectives
» infill criterion adapted to the problem at hand
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Gaussian process (GP) regression

GPs make popular surrogates, in particular with their uncertainty
quantification and interpolation capabilities.
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DiceKriging is used for GP regression here.



A word on MO acquisition functions

Some are based on a notion of improvement:
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Other on the notion of variance (or entropy) of a given quantity.



Example 1
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bi-objective optimization
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Example 1: bi-objective optimization (cont'd)

After sequentially adding 5 designs... ... and another 5 more designs
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Some postprocessings are available as well:
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Example 1: bi-objective optimization (cont'd)

After sequentially adding 5 designs... ... and another 5 more designs

-5
I
-5
I

-35 -30 -25 -20 -15 -10
-35 -30 -25 -20 -15 -10

Some postprocessings are available as well:

Symmetric deviation function Probability of non-domination
1.0
0 1.0
-5
0'80.8
-10
06
. 154 06
-20 04
04
-25
02
30 02

T T T T T 00
0 50 100 150 200 00

fi



Test case: rear shock absorber (d = 47)
Objectives: mass, axial and lateral impacts on empty or charged
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Many-objective challenges

Taking more objectives is possible, e.g., with 3:

But, as p grows:

> visualization and selection is more complex,
» approximating the Pareto set/front is increasingly difficult,
> the proportion of non-dominated solutions grows quickly.



Game theoretic perspective on many-objective optimization

With a limited budget, it is more reasonable to focus on a single
good solution: the Kalai-Smorodinsky (KS) solution.

Objectives are considered as players, aiming to get equal benefit
ratios from a disagrement point (e.g., the Nadir point).

Objective space Design space
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Calibration of an agent-based behavioral model

13-variable model of behavior of occupants in a building.
The 9 objectives are target values based on record or surveys.

Preferences can be incorporated by defining a custom disagrement
point.

Result with 100 initial designs and 100 sequentially added ones:
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Thanks

GPareto efficiently solves expensive multi-objective optimization
problems. Additional post-processing routines are available for
further uncertainty quantification on the Pareto front and set.

Complementarily, GPGame tackles many-objective optimization with
a game theoretic point of view, and can find discrete Nash equilibria.

Both packages are available on CRAN, facilitating everything in this
reproducible Rmarkdown talk.

» A Journal of Statistical Software paper is available for
GPareto.


https://www.jstatsoft.org/article/view/v089i08

