

Bayesian sequential integration within a preclinical PK/PD modeling framework using rstan package Lessons learned

Fabiola La Gamba,

Tom Jacobs, Jan Serroyen, Helena Geys, Christel Faes

UseR! 2019, 12 July, Toulouse

Interuniversity Institute for Biostatistics and statistical Bioinformatics

PHARMACEUTICAL COMPANIES OF

Drouville, Dragonfish Drouville is a patient, graphic designer and artist from Argentina who has survived Multiple Myeloma and a relapse.

A novel **PK/PD model** has been developed to assess the **synergy** resulting from the co-administration of 2 compounds.

$$\frac{d\bar{R}_{it}}{dt} = k_{in} \left(1 - \frac{I_{max}C_{it}}{IC_{50} + C_{it}} \right) - k_{out}\bar{R}_{it}, \qquad IC_{50,comb} = IC_{50} \ e^{\alpha D_{n,i} + \beta D_{e,i}D_{n,i}}$$

11 trials are integrated **sequentially**: the posteriors from one trial are used to determine the priors of the next trial.

Challenge: Performing a complex nonlinear hierarchical model on small data during the first integration steps may cause **practical identifiability issues**.

A novel **PK/PD model** has been developed to assess the **synergy** resulting from the co-administration of 2 compounds.

$$\frac{d\bar{R}_{it}}{dt} = k_{in} \left(1 - \frac{I_{max}C_{it}}{IC_{50} + C_{it}} \right) - k_{out}\bar{R}_{it}, \qquad IC_{50,comb} = IC_{50} \ e^{\alpha D_{n,i} + \beta D_{e,i}D_{n,i}}$$

11 trials are integrated **sequentially**: the posteriors from one trial are used to determine the priors of the next trial.

Challenge: Performing a complex nonlinear hierarchical model on small data during the first integration steps may cause **practical identifiability issues**.

A novel **PK/PD model** has been developed to assess the **synergy** resulting from the co-administration of 2 compounds.

$$\frac{d\bar{R}_{it}}{dt} = k_{in} \left(1 - \frac{I_{max}C_{it}}{IC_{50} + C_{it}} \right) - k_{out}\bar{R}_{it}, \qquad IC_{50,comb} = IC_{50} \ e^{\alpha D_{n,i} + \beta D_{e,i}D_{n,i}}$$

11 trials are integrated **sequentially**: the posteriors from one trial are used to determine the priors of the next trial.

Challenge: Performing a complex nonlinear hierarchical model on small data during the first integration steps may cause **practical identifiability issues**.

A novel **PK/PD model** has been developed to assess the **synergy** resulting from the co-administration of 2 compounds.

$$\frac{d\bar{R}_{it}}{dt} = k_{in} \left(1 - \frac{I_{max}C_{it}}{IC_{50} + C_{it}} \right) - k_{out}\bar{R}_{it}, \qquad IC_{50,comb} = IC_{50} \ e^{\alpha D_{n,i} + \beta D_{e,i}D_{n,i}}$$

11 trials are integrated **sequentially**: the posteriors from one trial are used to determine the priors of the next trial.

Challenge: Performing a complex nonlinear hierarchical model on small data during the first integration steps may cause **practical identifiability issues**.

Prior Specification

Parameter correlation increases with decreasing prior precision. The correlated parameters compensate each other \rightarrow biased estimates

Take home message n.1 It is better to use informative priors, whenever possible

Prior Specification

Parameter correlation increases with decreasing prior precision. The correlated parameters compensate each other \rightarrow biased estimates

Take home message n.1 It is better to use informative priors, whenever possible

Choice of Random Effect

Take home message n.2 Better to allocate the random effect on a parameter that is not highly correlated with others, to avoid overcompensations

Choice of Random Effect

Take home message n.2 Better to allocate the random effect on a parameter that is not highly correlated with others, to avoid overcompensations

Design of sequential integration

Posterior predictions and predictive intervals, trial 1

Multiple doses assessed in each trial

Take home message n.3 Trial design plays a crucial role in the performance of Bayesian sequential integration. Identifiability issues if trials are poorly designed

Design of sequential integration

Posterior predictions and predictive intervals, trial 1

Multiple doses assessed in each trial

Take home message n.3 Trial design plays a crucial role in the performance of Bayesian sequential integration. Identifiability issues if trials are poorly designed

Design of sequential integration

Posterior predictions and predictive intervals, trial 1

Multiple doses assessed in each trial

Take home message n.3 Trial design plays a crucial role in the performance of Bayesian sequential integration. Identifiability issues if trials are poorly designed

Simulation study

Aim: To assess to what extent of model complexity the sequential integration deviates from the simple pooling

		Non- hierarchical	Hierarchical
Linear model	Informative	\checkmark	\checkmark
	Uninformative	\checkmark	\checkmark
1-comp PK model*	Informative	\checkmark	\checkmark
	Uninformative	\checkmark	Ţ
Sigmoidal Emax model	Informative	\checkmark	\checkmark
	Uninformative	\checkmark	×

* Linear kinetics, non-linear over time, sequential integration over doses

Simulation study

Aim: To assess to what extent of model complexity the sequential integration deviates from the simple pooling

		Non- hierarchical	Hierarchical
Linear model	Informative	\checkmark	\checkmark
	Uninformative	\checkmark	\checkmark
1-comp PK model*	Informative	\checkmark	\checkmark
	Uninformative	\checkmark	Ţ
Sigmoidal Emax model	Informative	\checkmark	\checkmark
	Uninformative	\checkmark	×

* Linear kinetics, non-linear over time, sequential integration over doses

Simulation study

Aim: To assess to what extent of model complexity the sequential integration deviates from the simple pooling

		Non- hierarchical	Hierarchical
Linear model	Informative	\checkmark	\checkmark
	Uninformative	\checkmark	\checkmark
1-comp PK model*	Informative	\checkmark	\checkmark
	Uninformative	\checkmark	Ţ
Sigmoidal Emax model	Informative	\checkmark	\checkmark
	Uninformative	\checkmark	×

* Linear kinetics, non-linear over time, sequential integration over doses

