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Bayesian sequential integration within a preclinical
PK/PD modeling framework using rstan package
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Case Study and Aim

A novel PK/PD model has been developed to assess the synergy resulting
from the co-administration of 2 compounds.

dR;¢ ImaxCit _ . ..

11 trials are integrated sequentially: the posteriors from one trial are used
to determine the priors of the next trial.

Trial 1 B — =

Challenge: Performing a complex nonlinear hierarchical model on small data
during the first integration steps may cause practical identifiability issues.

Aim: To study the factors influencing the results using rstan
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Prior Specification

Prior for I, 4., SD=0.02 Prior for I,,,,,, SD=0.04 Prior for I,,,,, SD=0.29
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Parameter correlation increases with decreasing prior precision.
The correlated parameters compensate each other - biased estimates

[Take home message n.1 It is better to use informative priors, whenever possible}
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Choice of Random Effect

Posterior predictions and predictive intervals, trial 1

Random baseline model Random k,,; model
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Take home message n.2 Better to allocate the random effect on a parameter
that is not highly correlated with others, to avoid overcompensations

—
KU LEUVEN J anssen , ‘ gvfwt-tm«wg«'yﬁ-ﬂ-tmt 4



Choice of Random Effect

Posterior predictions and predictive intervals, trial 1

Random baseline model Random k,,; model

Vehicle Novel compound Marketed compound Combination Vehicle Novel compound Marketed compound Combination
39- 29-
) [ L] L] L] L] - - - » ® . . - L] .
36-* - - = '\.___.___,_i.—'——-. . . 36-¢ ’\.___._,_,J—-——, . .
. 'y A .
33- 33-
30- 30-
27 - 27-
39- 39-
- . » L] - » . IS - L] -
- -
36-® . \_____._——o ™ 36-e \_______—-. .
33- . . 33- e ] x
.
30- . 30- -
27 - 27 -
o 39- g s9-
= ] - (] ] L4 . L ] - [ ] ] L]
T 36-¢ . g ] § 36-* T
@ . .
. o .
24 . £ 33- o .
g . 2 2
> 30~ > 30-
2 ]
& 27- & 27-
39- 39-
Py - - . . » - - L - .
a6 - \._./’-. 36 — e .
33= 33 A . .
30- 30-
27- 27-
g, 39-
39 . L] . . . A - 1
36-F N d 3 . \_";_: a5 . o . . '\__—/ .
.
23- y \._),—- a3 \.—_-/-
30- 30~
27- 27, 1 1 1 [ 1 1 1 [ 1 1 1 [ 1 ] 1 1
o 1 2 3 40 1 2 3 406 41 2 3 46 1 2 3 a4 o 1 2 3 40 1 2 3 40 1 2 3 40 1 2 3 4
Time (h) Time (h)

Take home message n.2 Better to allocate the random effect on a parameter
that is not highly correlated with others, to avoid overcompensations

—
KU LEUVEN J anssen , ‘ gvfwt-tm«wg«'yﬁ-ﬂ-tmt 4



Body temperature

Design of sequential integration

Posterior predictions and predictive intervals, trial 1

One single dose assessed in each trial
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Body temperature

Multiple doses assessed in each trial
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Take home message n.3 Trial design plays a crucial role in the performance of
Bayesian sequential integration. Identifiability issues if trials are poorly designed
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Simulation study

Aim: To assess to what extent of model complexity the sequential
integration deviates from the simple pooling
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* Linear kinetics, non-linear over time, sequential integration over doses
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