
Packaging shiny applications

Maxim Nazarov - Open Analytics

July 12, 2019

What?

Main points

• use functions for UI & Server components

• use modules for application blocks

• package everything

How?

Functions for UI & Server components instead of server.R and ui.R files:
myAppUI <- function() {

fluidPage(...)
}
myAppServer <- function(input, output, session) {

...
}

Function to launch the application
runShinyApp <- function(...) {

shinyApp(ui = myAppUI(), server = myAppServer, options = list(...))
}

Why?
Why use functions for UI & Server?

• easier to add arguments for conditional execution, e.g.: debugging,
bookmarking, different environments, parameterized apps, . . .

myAppUI <- function(debug = TRUE) {
fluidPage(

if (isTRUE(debug))
actionLink(inputId = "debug", label = "Connect with console")

)
}
runShinyApp <- function(debug = TRUE, ...) {

shinyApp(ui = myAppUI(debug = debug), server = myAppServer, ...)
}

• Belongs together with the other R code (in the package)

Why?
Why use functions for UI & Server?

• easier to add arguments for conditional execution, e.g.: debugging,
bookmarking, different environments, parameterized apps, . . .

myAppUI <- function(debug = TRUE) {
fluidPage(

if (isTRUE(debug))
actionLink(inputId = "debug", label = "Connect with console")

)
}
runShinyApp <- function(debug = TRUE, ...) {

shinyApp(ui = myAppUI(debug = debug), server = myAppServer, ...)
}

• Belongs together with the other R code (in the package)

Why?

Why use modules?

• Separate application into logical pieces

• Cleaner code than splitting server.R into multiple files and source()-ing

• Each module is contained in two functions for UI & Server components→
independent testing possible

• Share and re-use within and between applications

Why?

Why use modules?

• Separate application into logical pieces

• Cleaner code than splitting server.R into multiple files and source()-ing

• Each module is contained in two functions for UI & Server components→
independent testing possible

• Share and re-use within and between applications

Why?

Why package shiny applications?

• All the advantages of the R packaging ecosystem:
• managing dependencies and namespaces (instead of global.R file and assorted

library calls)

• versioning, documentation, tests

• code consistency checks (R CMD check)

• Keep application code next to the functional code
• R code lives in the R directory (instead of inst)

• Easy to share and distribute

Why?

Why package shiny applications?

• All the advantages of the R packaging ecosystem:
• managing dependencies and namespaces (instead of global.R file and assorted

library calls)

• versioning, documentation, tests

• code consistency checks (R CMD check)

• Keep application code next to the functional code
• R code lives in the R directory (instead of inst)

• Easy to share and distribute

Why not?

• May require extra coding/attention in setting up modules and communication
between them

• The changes to the UI & Server can’t be seen without package re-loading /
re-installation: this can be facilitated with pkgload/devtools:

pkgload::load_all("/path/to/myPackage")
myPackage::runShinyApp()

• Can’t use www folder in the UI function: this can be solved with system.file
and/or addResourcePath

Why not?

• May require extra coding/attention in setting up modules and communication
between them

• The changes to the UI & Server can’t be seen without package re-loading /
re-installation: this can be facilitated with pkgload/devtools:

pkgload::load_all("/path/to/myPackage")
myPackage::runShinyApp()

• Can’t use www folder in the UI function: this can be solved with system.file
and/or addResourcePath

Where?
ShinyProxy

• All the dependencies are already listed in the DESCRIPTION file of your R
package

• Straightforward to create a Docker image:
• add the R package’s .tar.gz

• install it with remotes::install_local(..., dependencies = TRUE)

Shiny server

• When the application folder is required, it can be very minimal: consisting of
just an app.R file with

myPackage::runShinyApp(debug = FALSE)

Where?
ShinyProxy

• All the dependencies are already listed in the DESCRIPTION file of your R
package

• Straightforward to create a Docker image:
• add the R package’s .tar.gz

• install it with remotes::install_local(..., dependencies = TRUE)

Shiny server

• When the application folder is required, it can be very minimal: consisting of
just an app.R file with

myPackage::runShinyApp(debug = FALSE)

Thank you!

Take home:

• See if this approach works for your next project!

Check out:

• shinyproxy.io: enterprise-ready open-source shiny deployment solution

Feedback:

• maxim.nazarov@openanalytics.eu

shinyproxy.io
mailto:maxim.nazarov@openanalytics.eu

Thank you!

Take home:

• See if this approach works for your next project!

Check out:

• shinyproxy.io: enterprise-ready open-source shiny deployment solution

Feedback:

• maxim.nazarov@openanalytics.eu

shinyproxy.io
mailto:maxim.nazarov@openanalytics.eu

