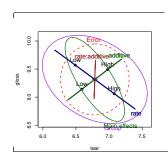
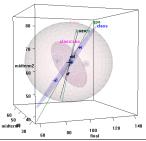
Visualizing multivariate linear models in R

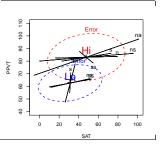
Michael Friendly¹ Matthew Sigal²

¹ York University, Toronto ² Simon Fraser University

useR 2019 Toulouse, July 9–12, 2019

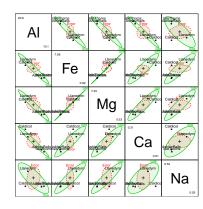






Outline

- Background
 - Overview
 - Visual overview
 - Data ellipses
 - The Multivariate Linear Model
- 2 Hypothesis Error (HE) plots
 - Motivating example
 - Visualizing H and E variation
 - MANOVA designs
- Reduced-rank displays
 - Low-D displays of high-D data
 - Canonical discriminant HE plots
- Recent extensions
 - Robust MLMs
 - Influence diagnostics for MLMs
 - Ridge regression plots
- Conclusions



Slides: http://datavis.ca/papers/useR2019-2x2.pdf

Overview: Research topics

Graphical methods for univariate response models well-developed. What about MLMs?

- This talk outlines research on graphical methods for multivariate linear models (MLMs)— extending visualization for multiple regression, ANOVA, and ANCOVA designs to those with several response variables.
- The topics addressed include:
 - Visualizing multivariate tests with Hypothesis-Error (HE) plots in 2D and 3D
 - Low-D views: Generalized canonical discriminant analysis → canonical HE plots
 - Visualization methods for tests of equality of covariance matrices in MANOVA designs
 - Extending these methods to robust MLMs
 - Developing multivariate analogs of influence measures and diagnostic plots for MI Ms.

Friendly & Sigal Viz MLs in R useR 2019

Overview: R packages

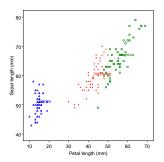
The following R packages implement these methods:

- car package: provides the infrastructure for hypothesis tests (Anova())
 and tests of linear hypotheses (linearHypothesis()) in MLMs,
 including repeated measures designs.
- heplots package: implements the HE plot framework in 2D (heplot()),
 3D (heplot3d()), and scatterplot matrix form (pairs.mlm()). Also provides:
 - covEllipses () for covariance ellipses, with optional robust estimation
 - boxM() and related methods for testing / visualizing equality of covariance matrices in MANOVA
 - Tutorial vignettes and many data set examples of use
- candisc package: generalized canonical discriminant analysis for an MLM, and associated plot methods.
- mvinfluence package: Multivariate extensions of leverage and influence (Cook's D) and influencePlot.mlm() in various forms.
- genridge package: Generalized 2D & 3D ridge regression plots.

Friendly & Sigal Viz MLs in R useR 2019

What we know how to do well (almost)

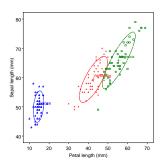
2 vars: Scatterplot



Friendly & Sigal Viz MLs in R useR 2019

What we know how to do well (almost)

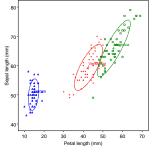
- 2 vars: Scatterplot + annotations (data ellipses, smoothers)
- p vars: Scatterplot matrix (all pairs)

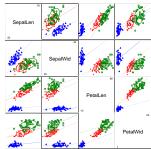


Friendly & Sigal Viz MLs in R useR 2019

What we know how to do well (almost)

- 2 vars: Scatterplot + annotations (data ellipses, smoothers)
- p vars: Scatterplot matrix (all pairs)
- p vars: Reduced-rank display—show max. total variation \mapsto biplot

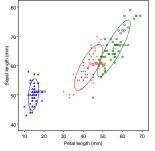


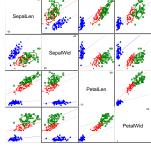


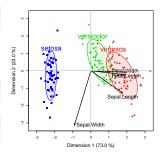
Friendly & Sigal Viz MLs in R useR 2019

What we know how to do well (almost)

- 2 vars: Scatterplot + annotations (data ellipses, smoothers)
- p vars: Scatterplot matrix (all pairs)
- p vars: Reduced-rank display—show max. total variation \mapsto biplot







5/38

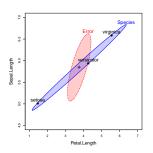
Friendly & Sigal Viz MLs in R useR 2019

Visual overview: Multivariate linear model.

$$Y = XB + U$$

What is new here?

- 2 vars: HE plot— data ellipses of H (fitted) and E (residual) SSP matrices
- p vars: HE plot matrix (all pairs)



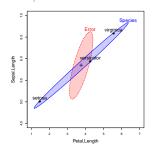
Friendly & Sigal Viz MLs in R useR 2019

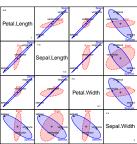
Visual overview: Multivariate linear model,

$$Y = XB + U$$

What is new here?

- 2 vars: HE plot— data ellipses of **H** (fitted) and **E** (residual) SSP matrices
- p vars: HE plot matrix (all pairs)
- ullet p vars: Reduced-rank display—show max. $m{H}$ wrt. $m{E} \mapsto$ Canonical HE plot





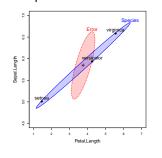
Friendly & Sigal Viz MLs in R useR 2019

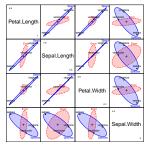
Visual overview: Multivariate linear model.

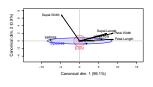
$$Y = XB + U$$

What is new here?

- 2 vars: HE plot— data ellipses of H (fitted) and E (residual) SSP matrices
- p vars: HE plot matrix (all pairs)
- p vars: Reduced-rank display— show max. **H** wrt. $E \mapsto$ Canonical HE plot







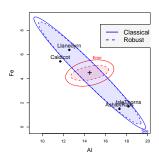
6/38

Friendly & Sigal Viz MLs in R useR 2019

Visual overview: Recent extensions

Extending univariate methods to MLMs:

- Robust estimation for MLMs (heplots)
- Influence measures and diagnostic plots for MLMs (mvinfluence)

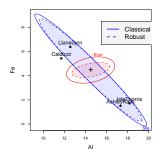


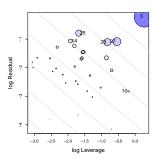
Friendly & Sigal Viz MLs in R useR 2019

Visual overview: Recent extensions

Extending univariate methods to MLMs:

- Robust estimation for MLMs (heplots)
- Influence measures and diagnostic plots for MLMs (myinfluence)
- Visualizing canonical correlation analysis (candisc)



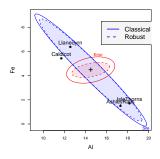


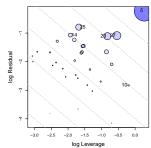
Friendly & Sigal Viz MLs in R useR 2019

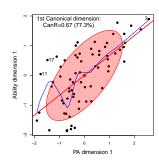
Visual overview: Recent extensions

Extending univariate methods to MLMs:

- Robust estimation for MLMs (heplots)
- Influence measures and diagnostic plots for MLMs (mvinfluence)
- Visualizing canonical correlation analysis (candisc)







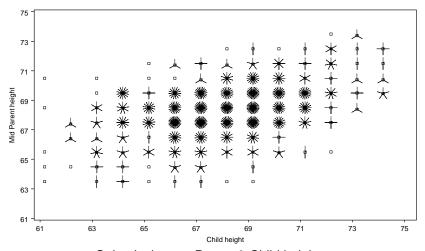
Friendly & Sigal Viz MLs in R useR 2019

Data ellipsoids: Visually sufficient summaries

- For any p-variable, multivariate normal $\mathbf{y} \sim \mathcal{N}_p(\mu, \Sigma)$, the mean vector $\bar{\mathbf{y}}$ and sample covariance \mathbf{S} are sufficient statistics
- Geometrically, contours of constant density are ellipsoids centered at μ with size and shape determined by Σ
- \mapsto the data (concentration) ellipsoid, $\mathcal{E}(\bar{\pmb{y}}, \pmb{S})$ is a sufficient visual summary
- Easily robustified by using robust estimators of location and scatter

Friendly & Sigal Viz MLs in R useR 2019

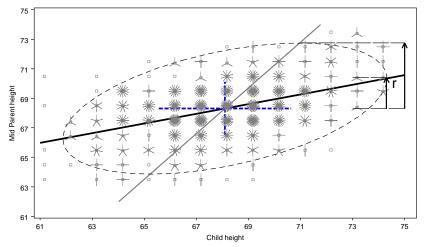
Data Ellipses: Galton's data



Galton's data on Parent & Child height

Friendly & Sigal Viz MLs in R useR 2019

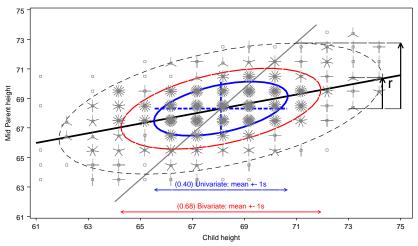
Data Ellipses: Galton's data



Data ellipse: Shows means, std. devs, regression lines, correlation

Friendly & Sigal Viz MLs in R useR 2019

Data Ellipses: Galton's data



Radii: $c^2 = \chi_p^2 (1 - \alpha)$ — 40%, 68% and 95% data ellipses

Friendly & Sigal Viz MLs in R useR 2019

The Data Ellipse: Details

Visual summary for bivariate relations

- Shows: means, standard deviations, correlation, regression line(s)
- **Defined**: set of points whose squared Mahalanobis distance $\leq c^2$,

$$D^2(\mathbf{y}) \equiv (\mathbf{y} - \bar{\mathbf{y}})^{\mathsf{T}} \mathbf{S}^{-1} (\mathbf{y} - \bar{\mathbf{y}}) \leq c^2$$

S = sample covariance matrix

- Radius: when y is ≈ bivariate normal, D²(y) has a large-sample χ² distribution with 2 degrees of freedom.
 - $c^2=\chi^2_2(0.40)\approx$ 1: 1 std. dev univariate ellipse– 1D shadows: $\bar{y}\pm 1s$
 - $c^2 = \chi_2^2(0.68) = 2.28$: 1 std. dev bivariate ellipse
 - $c^2 = \chi_2^2(0.95) \approx 6$: 95% data ellipse, 1D shadows: Scheffé intervals
- **Construction**: Transform the unit circle, $\mathcal{U} = (\sin \theta, \cos \theta)$,

$$\mathcal{E}_c = \bar{\boldsymbol{y}} + c \boldsymbol{S}^{1/2} \mathcal{U}$$

 $S^{1/2}$ = any "square root" of S (e.g., Cholesky)

• p variables: Extends naturally to p-dimensional ellipsoids

Friendly & Sigal Viz MLs in R useR 2019

The univariate linear model

- Model: $y_{n\times 1} = X_{n\times q} \beta_{q\times 1} + \epsilon_{n\times 1}$, with $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I_n)$
- LS estimates: $\hat{\beta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$
- General Linear Test: $H_0: C_{h\times q}\beta_{q\times 1} = 0$, where C = matrix of constants; rows specify h linear combinations or contrasts of parameters.
- e.g., Test of $H_0: \beta_1 = \beta_2 = 0$ in model $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i$

$$\mathbf{C}\boldsymbol{\beta} = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \left(\begin{array}{c} \beta_0 \\ \beta_1 \\ \beta_2 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$$

All → F-test: How big is SS_H relative to SS_F?

$$F = \frac{SS_H/\mathrm{df}_h}{SS_F/\mathrm{df}_e} = \frac{MS_H}{MS_F} \longrightarrow (MS_H - F MS_E) = 0$$

Friendly & Sigal Viz MLs in R useR 2019 12 / 38

The multivariate linear model

- Model: $Y_{n \times p} = X_{n \times q} B_{q \times p} + U$, for p responses, $Y = (y_1, y_2, \dots, y_p)$
- General Linear Test: $H_0: C_{h\times q} B_{q\times p} = \mathbf{0}_{h\times p}$
- Analogs of sums of squares, SS_H and SS_E are $(p \times p)$ matrices, $\textbf{\textit{H}}$ and $\textbf{\textit{E}}$

$$\begin{aligned} \boldsymbol{H} &= (\boldsymbol{C}\widehat{\boldsymbol{B}})^{\mathsf{T}} [\boldsymbol{C}(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-}\boldsymbol{C}^{\mathsf{T}}]^{-1} (\boldsymbol{C}\widehat{\boldsymbol{B}}) \ , \\ \boldsymbol{E} &= \boldsymbol{U}^{\mathsf{T}}\boldsymbol{U} = \boldsymbol{Y}^{\mathsf{T}}[\boldsymbol{I} - \boldsymbol{H}]\boldsymbol{Y} \ . \end{aligned}$$

Analog of univariate F is

,

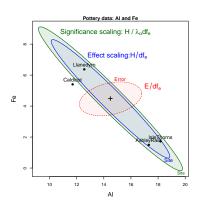
$$\det\left(\boldsymbol{H}-\lambda\boldsymbol{E}\right)=0\ ,$$

- How big is H relative to E?
 - Latent roots $\lambda_1, \lambda_2, \dots \lambda_s$ measure the "size" of \boldsymbol{H} relative to \boldsymbol{E} in $\boldsymbol{s} = \min(\boldsymbol{p}, df_h)$ orthogonal directions.
 - Test statistics (Wilks' Λ, Pillai trace criterion, Hotelling-Lawley trace criterion, Roy's maximum root) all combine info across these dimensions

Friendly & Sigal Viz MLs in R useR 2019

Outline

- Background
 - Overview
 - Visual overview
 - Data ellipses
 - The Multivariate Linear Model
- 2 Hypothesis Error (HE) plots
 - Motivating example
 - Visualizing H and E variation
 - MANOVA designs
 - Reduced-rank displays
 - Low-D displays of high-D data
 - Canonical discriminant HE plots
- Recent extensions
 - Robust MLMs
 - Influence diagnostics for MLMs
 - Ridge regression plots
 - Conclusions



Tubb, Parker & Nicholson analyzed the chemical composition of 26 samples of Romano-British pottery found at four kiln sites in Britain.

- Sites: Ashley Rails, Caldicot, Isle of Thorns, Llanedryn
- Variables: aluminum (AI), iron (Fe), magnesium (Mg), calcium (Ca) and sodium (Na)
- → One-way MANOVA design, 4 groups, 5 responses

Friendly & Sigal Viz MLs in R useR 2019 15 / 38

Questions:

- Can the content of Al, Fe, Mg, Ca and Na differentiate the sites?
- How to understand the contributions of chemical elements to discrimination?

Numerical answers:

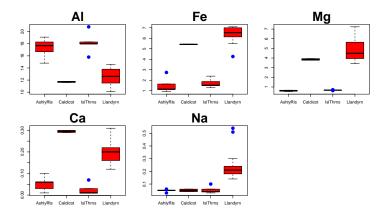
What have we learned?

- Can: YES! We can discriminate sites.
- But: How to understand the pattern(s) of group differences: ???

Friendly & Sigal Viz MLs in R useR 2019 16/38

Univariate plots are limited

- Do not show the relations of response variables to each other
- Do not show how variables contribute to multivariate tests

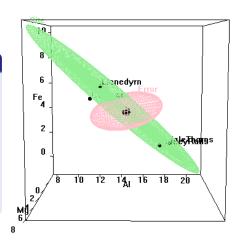


Friendly & Sigal Viz MLs in R useR 2019

Visual answer: HE plot

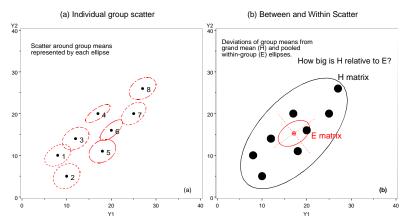
- Shows variation of means (*H*) relative to residual (*E*) variation
- Size and orientation of *H* wrt *E*:
 how much and how variables
 contribute to discrimination
- Evidence scaling: H is scaled so that it projects outside E iff null hypothesis is rejected.

Run henlot-movie not



R> heplot3d(pottery.mod)

HE plots: Visualizing *H* and *E* variation



Ideas behind multivariate tests: (a) Data ellipses; (b) H and E matrices

- H ellipse: data ellipse for fitted values, $\hat{y}_{ij} = \bar{y}_{j}$.
- \boldsymbol{E} ellipse: data ellipse of residuals, $\hat{\boldsymbol{y}}_{ij} \bar{\boldsymbol{y}}_{j}$.

Friendly & Sigal Viz MLs in R useR 2019

HE plot details: **H** and **E** matrices

Recall the data on 5 chemical elements in samples of Romano-British pottery from 4 kiln sites:

R> summary (Manova (pottery.mod))

```
Sum of squares and products for error:
                    Mg
Al 48.29
          7.080
                 0.608
                        0.106 0.589
                 0.527
   7.08 10.951
                       -0.155 0.067
          0.527 15.430
Mg
   0.61
                       0.435 0.028
    0.11 -0.155 0.435
                       0.051 0.010
Ca
    0.59
                 0.028
                        0.010 0.199
         0.067
```

Term: Site

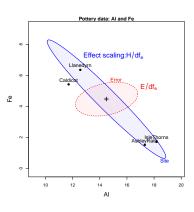
```
Sum of squares and products for hypothesis:
                      Mg
                            Ca
                                   Na
    175.6 -149.3 -130.8
                         -5.89
Fe -149.3
           134.2
                   117.7
                                 5.33
Mq - 130.8
           117.7
                  103.4
                          4.21
                                4.71
Ca
     -5.9
             4.8
                          0.20
                                0.15
     -5.4
             5.3
                          0.15
                                 0.26
Na
                     4.7
```

- E matrix: Within-group (co)variation of residuals
 - diag: SSE for each variable
 - ullet off-diag: \sim partial correlations
- H matrix: Between-group (co)variation of means
 - diag: SSH for each variable
 - off-diag: ∼ correlations of means
- How big is **H** relative to **E**?
- Ellipsoids: dim(H) = rank(H) = min(p, df_h)

HE plot details: Scaling H and E

- The E ellipse is divided by $df_e = (n p) \rightarrow \text{data ellipse of residuals}$
 - Centered at grand means → show factor means in same plot.
- "Effect size" scaling– ${\it H}/{\it df_e}
 ightarrow$ data ellipse of fitted values.
- "Significance" scaling

 H ellipse protrudes beyond E ellipse iff H₀ can be rejected by Roy maximum root test
 - $H/(\lambda_{\alpha} df_e)$ where λ_{α} is critical value of Roy's statistic at level α .
 - direction of H wrt $E \mapsto \text{linear}$ combinations that depart from H_0 .



21/38

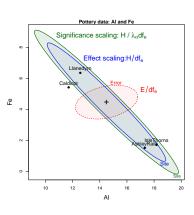
R> heplot(pottery.mod, size="effect")

Friendly & Sigal Viz MLs in R useR 2019

HE plot details: Scaling H and E

- The E ellipse is divided by $df_e = (n p) \rightarrow \text{data ellipse of residuals}$
 - Centered at grand means → show factor means in same plot.
- "Effect size" scaling– $H/df_e \rightarrow$ data ellipse of fitted values.
- "Significance" scaling

 H ellipse protrudes
 beyond E ellipse iff H₀ can be rejected by
 Roy maximum root test
 - $H/(\lambda_{\alpha}df_{e})$ where λ_{α} is critical value of Roy's statistic at level α .
 - direction of *H* wrt *E* → linear combinations that depart from *H*₀.



21/38

R> heplot(pottery.mod, size="evidence")

Friendly & Sigal Viz MLs in R useR 2019

HE plot details: Contrasts and linear hypotheses

- An overall effect \mapsto an \mathbf{H} ellipsoid of $s = \min(p, df_h)$ dimensions
- Linear hypotheses, of rank h, $H_0: \mathbf{C}_{h \times q} \, \mathbf{B}_{q \times p} = \mathbf{0}_{h \times p} \mapsto \text{sub-ellipsoid of dimension } h$

$$\mathbf{C} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$



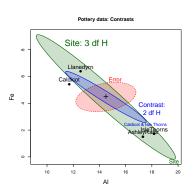
Friendly & Sigal Viz MLs in R useR 2019 22 / 38

HE plot details: Contrasts and linear hypotheses

- An overall effect \mapsto an H ellipsoid of $s = \min(p, df_n)$ dimensions
- Linear hypotheses, of rank h, $H_0: \mathbf{C}_{h \times q} \mathbf{B}_{q \times p} = \mathbf{0}_{h \times p} \mapsto \text{sub-ellipsoid of dimension } h$

$$\boldsymbol{\textit{C}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- 1D tests and contrasts → degenerate 1D ellipses (lines)
- Beautiful geometry:
 - Sub-hypotheses are tangent to enclosing hypotheses
 - Orthogonal contrasts form conjugate axes

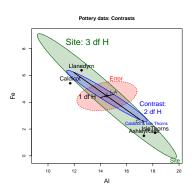


HE plot details: Contrasts and linear hypotheses

- An overall effect \mapsto an H ellipsoid of $s = \min(p, df_n)$ dimensions
- Linear hypotheses, of rank h, $H_0: \mathbf{C}_{h \times q} \mathbf{B}_{q \times p} = \mathbf{0}_{h \times p} \mapsto \text{sub-ellipsoid of dimension } h$

$$\boldsymbol{\textit{C}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

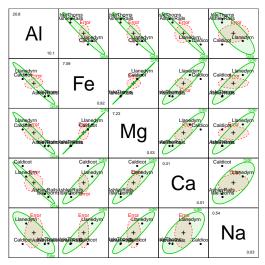
- Beautiful geometry:
 - Sub-hypotheses are tangent to enclosing hypotheses
 - Orthogonal contrasts form conjugate axes



HE plot matrices: All bivariate views

AL stands out – opposite pattern $r(\overline{Fe}, \overline{Mg}) \approx 1$

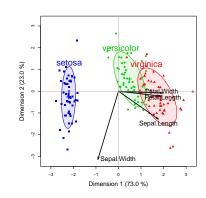
Jump to low-D



R> pairs(pottery.mod)

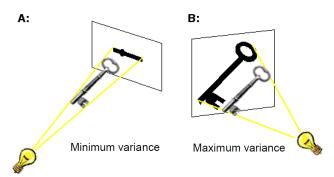
Outline

- Background
 - Overview
 - Visual overview
 - Data ellipses
 - The Multivariate Linear Model
- 2 Hypothesis Error (HE) plots
 - Motivating example
 - Visualizing H and E variation
 - MANOVA designs
 - Reduced-rank displays
 - Low-D displays of high-D data
 - Canonical discriminant HE plots
- Recent extensions
 - Robust MLMs
 - Influence diagnostics for MLMs
 - Ridge regression plots
 - Conclusions



Low-D displays of high-D data

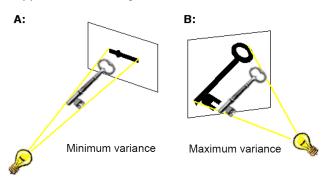
- High-D data often shown in 2D (or 3D) views— orthogonal projections in variable space— scatterplot
- Dimension-reduction techniques: project the data into subspace that has the largest shadow— e.g., accounts for largest variance.
- ullet ightarrow low-D approximation to high-D data



Friendly & Sigal Viz MLs in R useR 2019 25 / 38

Low-D displays of high-D data

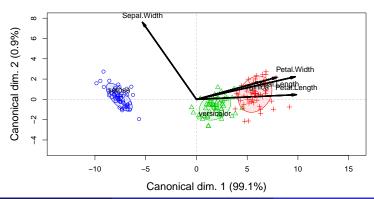
- High-D data often shown in 2D (or 3D) views— orthogonal projections in variable space— scatterplot
- Dimension-reduction techniques: project the data into subspace that has the largest shadow— e.g., accounts for largest variance.
- → low-D approximation to high-D data



Friendly & Sigal Viz MLs in R useR 2019 25 / 38

Canonical discriminant HE plots

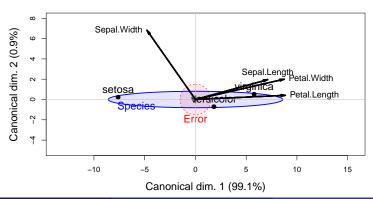
- As with biplot, we can visualize MLM hypothesis variation for all responses by projecting H and E into low-rank space.
- Canonical projection: $Y_{n \times p} \mapsto Z_{n \times s} = YE^{-1/2}V$, where V = eigenvectors of HE^{-1} .
- This is the view that maximally discriminates among groups, ie max. H
 wrt E!



Friendly & Sigal Viz MLs in R useR 2019

Canonical discriminant HE plots

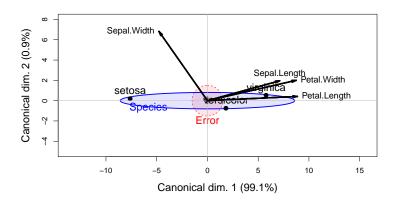
- Canonical HE plot is just the HE plot of canonical scores, (z_1, z_2) in 2D,
- or, z₁, z₂, z₃, in 3D.
- As in biplot, we add vectors to show relations of the y_i response variables to the canonical variates.
- variable vectors here are structure coefficients = correlations of variables with canonical scores.



Friendly & Sigal Viz MLs in R useR 2019

Canonical discriminant HE plots: Properties

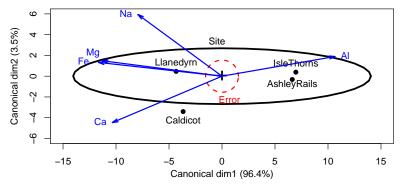
- Canonical variates are uncorrelated: E ellipse is spherical
- Variable vectors show how variables discriminate among groups
- ullet Lengths of variable vectors \sim contribution to discrimination



Friendly & Sigal Viz MLs in R useR 2019

Canonical discriminant HE plots: Pottery data

- Canonical HE plots provide 2D (3D) visual summary of H vs. E variation
- Pottery data: p = 5 variables, 4 groups $\mapsto df_H = 3$
- Variable vectors: Fe, Mg and Al contribute to distingiushing (Caldicot, Llandryn) from (Isle Thorns, Ashley Rails): 96.4% of mean variation
- Na and Ca contribute an additional 3.5%. End of story!

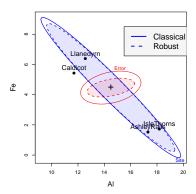


Run heplot-movie.ppt

Friendly & Sigal Viz MLs in R useR 2019

Outline

- Background
 - Overview
 - Visual overview
 - Data ellipses
 - The Multivariate Linear Model
- Hypothesis Error (HE) plots
 - Motivating example
 - Visualizing H and E variation
 - MANOVA designs
 - Reduced-rank displays
 - Low-D displays of high-D data
 - Canonical discriminant HE plots
- Recent extensions
 - Robust MLMs
 - Influence diagnostics for MLMs
 - Ridge regression plots
 - Conclusions



Robust MLMs

- R has a large collection of packages dealing with robust estimation:
 - robust::lmrob(), MASS::rlm(), for univariate LMs
 - robust::glmrob() for univariate generalized LMs
 - High breakdown-bound methods for robust PCA and robust covariance estimation
 - However, none of these handle the fully general MLM
- heplots now provides robmlm() for robust MLMs:
 - Uses a simple M-estimtor via iteratively re-weighted LS.
 - Weights: calculated from Mahalanobis squared distances, using a simple robust covariance estimator, MASS::cov.trob() and a weight function, ψ(D²).

$$D^{2} = (\mathbf{Y} - \widehat{\mathbf{Y}})^{\mathsf{T}} \mathbf{S}_{\text{trob}}^{-1} (\mathbf{Y} - \widehat{\mathbf{Y}}) \sim \chi_{\rho}^{2}$$
 (1)

- This fully extends the "mlm" class
- Compatible with other mlm extensions: car:::Anova() and heplot().

Friendly & Sigal Viz MLs in R useR 2019 31 / 38

Robust MLMs

- R has a large collection of packages dealing with robust estimation:
 - robust::lmrob(), MASS::rlm(), for univariate LMs
 - robust::glmrob() for univariate generalized LMs
 - High breakdown-bound methods for robust PCA and robust covariance estimation
 - However, none of these handle the fully general MLM
- heplots now provides robmlm() for robust MLMs:
 - Uses a simple M-estimtor via iteratively re-weighted LS.
 - Weights: calculated from Mahalanobis squared distances, using a simple robust covariance estimator, MASS::cov.trob() and a weight function, ψ(D²).

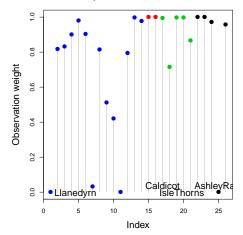
$$D^{2} = (\mathbf{Y} - \widehat{\mathbf{Y}})^{\mathsf{T}} \mathbf{S}_{\text{trob}}^{-1} (\mathbf{Y} - \widehat{\mathbf{Y}}) \sim \chi_{\rho}^{2}$$
 (1)

- This fully extends the "mlm" class
- Compatible with other mlm extensions: car:::Anova() and heplot().

Friendly & Sigal Viz MLs in R useR 2019 31/38

Robust MLMs: Example

For the Pottery data:

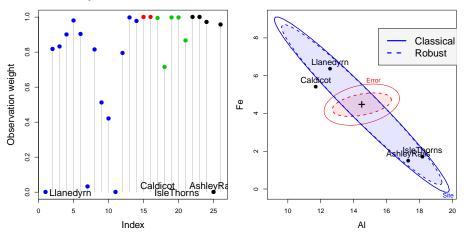


- Some observations are given weights \sim 0
- The *E* ellipse is considerably reduced, enhancing apparent significance

Friendly & Sigal Viz MLs in R useR 2019 32 / 38

Robust MLMs: Example

For the Pottery data:



The *E* ellipse is considerably reduced, enhancing apparent significance

Friendly & Sigal Viz MLs in R useR 2019 32 / 38

Influence diagnostics for MLMs

- Influence measures & diagnostic plots well-developed for univariate LMs
 - Influence measures: Cook's D, DFFITS, dfbetas, etc.
 - Diagnostic plots: Index plots, car:::influencePlot() for LMs
 - However, these are have been unavailable for MLMs
- The myinfluence package now provides:
 - Calculation for multivariate analogs of univariate influence measures (following Barrett & Ling, 1992), e.g., Hat values & Cook's D:

$$H_l = \mathbf{X}_l (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}_l^\mathsf{T} \tag{2}$$

$$D_{l} = [vec(\boldsymbol{B} - \boldsymbol{B}_{(l)})]^{\mathsf{T}} [\boldsymbol{S}^{-1} \otimes (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})] [vec(\boldsymbol{B} - \boldsymbol{B}_{(l)})]$$
(3)

- Provides deletion diagnostics for *subsets* (I) of size $m \ge 1$.
- e.g., m = 2 can reveal cases of masking or joint influence.
- Extension of influencePlot () to the multivariate case.
- A new plot format: leverage-residual (LR) plots (McCulloch & Meeter, 1983)

Friendly & Sigal Viz MLs in R useR 2019 33 / 38

Influence diagnostics for MLMs

- Influence measures & diagnostic plots well-developed for univariate LMs
 - Influence measures: Cook's D, DFFITS, dfbetas, etc.
 - Diagnostic plots: Index plots, car:::influencePlot() for LMs
 - However, these are have been unavailable for MLMs
- The mvinfluence package now provides:
 - Calculation for multivariate analogs of univariate influence measures (following Barrett & Ling, 1992), e.g., Hat values & Cook's D:

$$H_l = \boldsymbol{X}_l (\boldsymbol{X}^\mathsf{T} \boldsymbol{X})^{-1} \boldsymbol{X}_l^\mathsf{T} \tag{2}$$

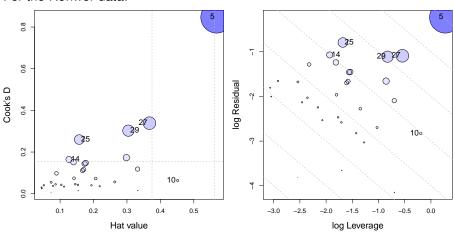
$$D_{l} = [\operatorname{vec}(\mathbf{B} - \mathbf{B}_{(l)})]^{\mathsf{T}} [\mathbf{S}^{-1} \otimes (\mathbf{X}^{\mathsf{T}} \mathbf{X})] [\operatorname{vec}(\mathbf{B} - \mathbf{B}_{(l)})]$$
(3)

- Provides deletion diagnostics for *subsets* (*I*) of size $m \ge 1$.
- e.g., m = 2 can reveal cases of masking or joint influence.
- Extension of influencePlot () to the multivariate case.
- A new plot format: leverage-residual (LR) plots (McCulloch & Meeter, 1983)

Friendly & Sigal Viz MLs in R useR 2019 33 / 38

Influence diagnostics for MLMs: Example

For the Rohwer data:



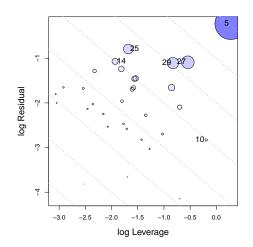
Cook's D vs. generalized Hat value

Leverage - Residual (LR) plot

Friendly & Sigal Viz MLs in R useR 2019 34 / 38

Influence diagnostics for MLMs: LR plots

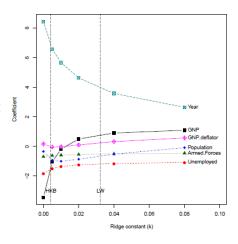
- Main idea: Influence ∼ Leverage (L) × Residual (R)
- $\bullet \mapsto \log(Infl) = \log(L) + \log(R)$
- Bubble size ~ influence (Cook's D)
- This simplifies interpretation of influence measures



Ridge regression plots

Shrinkage methods often use ridge trace plots to visualize effects

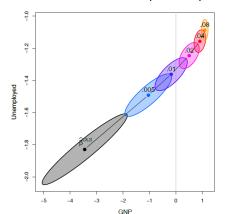
- Typical: univariate line plot of β_k vs. shrinkage, k
- What can you see here regarding bias vs. precision?
- This is the wrong graphic form, for a multivariate problem!
- Goal: visualize $\widehat{\beta}_k$ vs. $\widehat{\operatorname{Var}}(\widehat{\beta_k})$

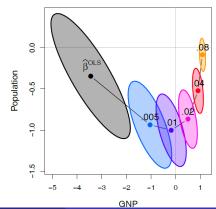


Generalized ridge trace plots

Rather than plotting just the univariate trajectories of β_k vs. K, plot the 2D (3D) confidence ellipsoids over the same range of k.

- Centers of the ellipsoids are $\widehat{\beta_k}$ same info as in univariate plot.
- Can see how change in one coefficient is related to changes in others.
- Relative size & shape of ellipsoids show directly effect on precision.





37 / 38

Friendly & Sigal Viz MLs in R useR 2019

Summary & Opportunities

- Data ellipse: visual summary of bivariate relations
 - Useful for multiple-group, MANOVA data
 - Embed in scatterplot matrix: pairwise, bivariate relations
 - Easily extend to show partial relations, robust estimators, etc.
- HE plots: visual summary of multivariate tests for MANOVA and MMRA
 - Group means (MANOVA) or 1-df H vectors (MMRA) aid interpretation
 - Embed in HE plot matrix: all pairwise, bivariate relations
 - Extend to show partial relations: HE plot of "adjusted responses"

Summary & Opportunities

- Data ellipse: visual summary of bivariate relations
 - Useful for multiple-group, MANOVA data
 - Embed in scatterplot matrix: pairwise, bivariate relations
 - Easily extend to show partial relations, robust estimators, etc.
- HE plots: visual summary of multivariate tests for MANOVA and MMRA
 - Group means (MANOVA) or 1-df H vectors (MMRA) aid interpretation
 - Embed in HE plot matrix: all pairwise, bivariate relations
 - Extend to show partial relations: HE plot of "adjusted responses"
- Dimension-reduction techniques: low-rank (2D) visual summaries

Summary & Opportunities

- Data ellipse: visual summary of bivariate relations
 - Useful for multiple-group, MANOVA data
 - Embed in scatterplot matrix: pairwise, bivariate relations
 - Easily extend to show partial relations, robust estimators, etc.
- HE plots: visual summary of multivariate tests for MANOVA and MMRA
 - Group means (MANOVA) or 1-df H vectors (MMRA) aid interpretation
 - Embed in HE plot matrix: all pairwise, bivariate relations
 - Extend to show partial relations: HE plot of "adjusted responses"
- Dimension-reduction techniques: low-rank (2D) visual summaries
 - Biplot: Observations, group means, biplot data ellipses, variable vectors
 - Canonical HE plots: Similar, but for dimensions of maximal discrimination
- Beautiful and useful geometries:
 - Ellipses everywhere; eigenvector-ellipse geometries!
 - Visual representation of significance in MLM
 - Opportunities for other extensions

- FIN et Merci -

Summary & Opportunities

- Data ellipse: visual summary of bivariate relations
 - Useful for multiple-group, MANOVA data
 - Embed in scatterplot matrix: pairwise, bivariate relations
 - Easily extend to show partial relations, robust estimators, etc.
- HE plots: visual summary of multivariate tests for MANOVA and MMRA
 - Group means (MANOVA) or 1-df H vectors (MMRA) aid interpretation
 - Embed in HE plot matrix: all pairwise, bivariate relations
 - Extend to show partial relations: HE plot of "adjusted responses"
- Dimension-reduction techniques: low-rank (2D) visual summaries
 - Biplot: Observations, group means, biplot data ellipses, variable vectors
 - Canonical HE plots: Similar, but for dimensions of maximal discrimination
- Beautiful and useful geometries:
 - Ellipses everywhere; eigenvector-ellipse geometries!
 - Visual representation of significance in MLM
 - Opportunities for other extensions

— FIN et Merci —