CMAP, Ecole Polytechnique & Inria XPOP

Adaptive Bayesian SLOPE — High-dimensional Model Selection with Missing Values

Wei Jiang wei.jiang@polytechnique.edu

Malgorzata Bogdan, Julie Josse, Blazej Miasojedow

useR! 2019 - July 11th

Motivation: Paris Hospital

• $Traumabase^{\mathbb{R}}$ data: 20000 major trauma patients \times 250 measurements.

Accident type	Age	Sex	Blood	Lactate	Temperature	Platelet
			pressure			(G/L)
Falling	50	M	140	NA	35.6	150
Fire	28	F	NA	4.8	36.7	250
Knife	30	M	120	1.2	NA	270
Traffic accident	23	M	110	3.6	35.8	170
Knife	33	M	106	NA	36.3	230
Traffic accident	58	F	150	NA	38.2	400

Motivation: Paris Hospital

• $Traumabase^{\mathbb{R}}$ data: 20000 major trauma patients \times 250 measurements.

Accident type	Age	Sex	Blood	Lactate	Temperature	Platelet
			pressure			(G/L)
Falling	50	M	140	NA	35.6	150
Fire	28	F	NA	4.8	36.7	250
Knife	30	M	120	1.2	NA	270
Traffic accident	23	M	110	3.6	35.8	170
Knife	33	M	106	NA	36.3	230
Traffic accident	58	F	150	NA	38.2	400

Objective:

Develop models to help emergency doctors make decisions.

Measurements
$$\stackrel{\text{Predict}}{\longrightarrow}$$
 Platelet \Rightarrow $X \stackrel{\text{Regression}}{\longrightarrow} y$

Motivation: Paris Hospital

 Traumabase[®] data: 20000 major trauma patients \times 250 measurements.

Accident type	Age	Sex	Blood	Lactate	Temperature	Platelet
			pressure			(G/L)
Falling	50	M	140	NA	35.6	150
Fire	28	F	NA	4.8	36.7	250
Knife	30	M	120	1.2	NA	270
Traffic accident	23	M	110	3.6	35.8	170
Knife	33	M	106	NA	36.3	230
Traffic accident	58	F	150	NA	38.2	400

Objective:

Develop models to help emergency doctors make decisions.

Measurements
$$\stackrel{\text{Predict}}{\longrightarrow}$$
 Platelet \Rightarrow $X \stackrel{\text{Regression}}{\longrightarrow} y$

Challenge:

How to **select** relevant measurements with **missing values**?

Model selection in high-dimension

Linear regression model: $y = X\beta + \varepsilon$,

- $y = (y_i)$: vector of response of length n
- $X = (X_{ij})$: a standardized design matrix of dimension $n \times p$
- $\beta = (\beta_j)$: regression coefficient of length p
- $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$

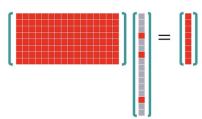
Model selection in high-dimension

Linear regression model: $y = X\beta + \varepsilon$,

- $y = (y_i)$: vector of response of length n
- $X = (X_{ij})$: a standardized design matrix of dimension $n \times p$
- $\beta = (\beta_j)$: regression coefficient of length p
- $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$

Assumptions:

- high-dimension: p large (including $p \ge n$)
- β is sparse with k < n nonzero coefficients



l_1 penalization methods

• LASSO (Tibshirani, 1996)

$$\hat{\beta}_{LASSO} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - X\beta\|^2 + \lambda \|\beta\|_1,$$

detects important variables with high probability but includes many false positives.

l_1 penalization methods

• LASSO (Tibshirani, 1996)

$$\hat{\beta}_{LASSO} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - X\beta\|^2 + \lambda \|\beta\|_1,$$

detects important variables with high probability but includes many false positives.

 SLOPE (Bogdan et al., 2015) penalizes larger coefficients more stringently

$$\hat{\beta}_{SLOPE} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - X\beta\|^2 + \sigma \sum_{i=1}^p \lambda_i |\beta|_{(j)},$$

where
$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$$
 and $|\beta|_{(1)} \geq |\beta|_{(2)} \geq \cdots \geq |\beta|_{(p)}$.

l_1 penalization methods

LASSO (Tibshirani, 1996)

$$\hat{\beta}_{LASSO} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - X\beta\|^2 + \lambda \|\beta\|_1,$$

detects important variables with high probability but includes many false positives.

SLOPE (Bogdan et al., 2015) penalizes larger coefficients more stringently

$$\hat{\beta}_{SLOPE} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - X\beta\|^2 + \sigma \sum_{j=1}^p \lambda_j |\beta|_{(j)},$$

where
$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$$
 and $|\beta|_{(1)} \geq |\beta|_{(2)} \geq \cdots \geq |\beta|_{(p)}$.

To control **False Discovery Rate (FDR)** at level *q*:

$$\lambda_{BH}(j) = \phi^{-1}(1 - q_j), \quad q_j = \frac{jq}{2p}, \quad X^T X = I, \quad \text{then}$$

$$FDR = \mathbb{E}\left[\frac{\#\text{False rejections}}{\#\text{Rejections}}\right] \le q$$

Bayesian SLOPE

Problem: λ for SLOPE leading to FDR control are typically large. SLOPE often returns **an inconsistent estimation.**

 \Rightarrow improve?

Bayesian SLOPE

Problem: λ for SLOPE leading to FDR control are typically large. SLOPE often returns **an inconsistent estimation**.

$$\Rightarrow$$
 improve?

SLOPE estimate = MAP of a Bayesian regression with SLOPE prior.

$$\hat{\beta}_{SLOPE} = \operatorname*{arg\,max}_{\beta} \mathtt{p}(y \mid X, \beta, \sigma^2; \lambda) \propto \mathtt{p}(y \mid X, \beta) \mathtt{p}(\beta \mid \sigma^2; \lambda)$$

where the SLOPE prior:

$$p(\beta \mid \sigma^2; \lambda) \propto \prod_{j=1}^p \exp\left(-\frac{1}{\sigma}\lambda_j |\beta|_{(j)}\right)$$

Adaptive Bayesian SLOPE

We propose an adaptive version of Bayesian SLOPE (ABSLOPE), with the prior for β as

$$p(\beta \mid \gamma, c, \sigma^2; \lambda) \propto c^{\sum_{j=1}^p \mathbb{I}(\gamma_j = 1)} \prod_j \exp \left\{ -\frac{w_j}{\beta_j} \left| \frac{1}{\sigma} \lambda_{r(\mathsf{W}\beta, j)} \right. \right\},$$

Interpretation of the model:

- β_i is large enough \Rightarrow true signal; $0 \Rightarrow$ noise.
- $\gamma_j \in \{0,1\}$ signal indicator. $\gamma_j | \theta \sim \textit{Bernoulli}(\theta)$ and θ the sparsity.
- $c \in [0,1]$: the inverse of average signal magnitude.
- $W = \text{diag}(w_1, w_2, \dots, w_p)$ and its diagonal element:

$$w_j = c\gamma_j + (1 - \gamma_j) = \begin{cases} c, & \gamma_j = 1 \\ 1, & \gamma_j = 0 \end{cases}$$

Adaptive Bayesian SLOPE

Advantage of introducing *W*:

- when $\gamma_j = 0$, $w_j = 1$, i.e., the null variables are treated with the regular SLOPE penalty
- when $\gamma_j = 1$, $w_j = c < 1$, i.e, smaller penalty $\lambda_{r(W\beta,j)}$ for true predictors than the regular SLOPE one

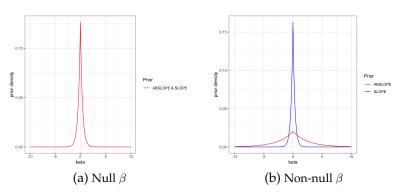


Figure: comparison of SLOPE prior and ABSLOPE prior

Model selection with missing values

Decomposition:
$$X = (X_{\text{obs}}, X_{\text{mis}})$$

Pattern: matrix M with $M_{ij} = \begin{cases} 1, & \text{if } X_{ij} \text{ is observed} \\ 0, & \text{otherwise} \end{cases}$

Assumption 1: Missing at random (MAR)

 $p(M \mid X_{obs}, X_{mis}) = p(M \mid X_{obs}) \Rightarrow \text{ignorable missing patterns}$ e.g. People at older age didn't tell his income at larger probability.

Assumption 2: Distribution of covariates

$$X_i \sim_{\text{i.i.d.}} \mathcal{N}_p(\mu, \Sigma), \quad i = 1, \cdots, n.$$

Model selection with missing values

Decomposition:
$$X = (X_{\text{obs}}, X_{\text{mis}})$$

Pattern: matrix M with $M_{ij} = \begin{cases} 1, & \text{if } X_{ij} \text{ is observed} \\ 0, & \text{otherwise} \end{cases}$

Assumption 1: Missing at random (MAR)

 $p(M \mid X_{obs}, X_{mis}) = p(M \mid X_{obs}) \Rightarrow \text{ignorable missing patterns}$ e.g. People at older age didn't tell his income at larger probability.

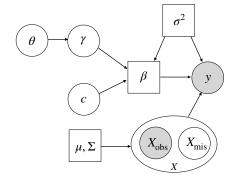
Assumption 2: Distribution of covariates

$$X_i \sim_{\text{i.i.d.}} \mathcal{N}_p(\mu, \Sigma), \quad i = 1, \dots, n.$$

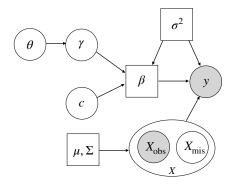
Problem: With NA, only a few methods are available to select a model, and their performances are limited. For example,

- (Claeskens and Consentino, 2008) adapts AIC to missing values ⇒ Impossible to deal with high dimensional analysis.
- (Loh and Wainwright, 2012) LASSO with NA
 - \Rightarrow Non-convex optimization; requires to know bound of $\|\beta\|_1$
 - \Rightarrow difficult in practice

ABSLOPE with missingness: Modeling



ABSLOPE with missingness: Modeling



$$\ell_{\text{comp}} = \log p(y, X, \gamma, c; \beta, \theta, \sigma^2) + pen(\beta)$$

= \log \{p(X; \mu, \Sigma) p(y | X; \beta, \sigma^2) p(\gamma; \theta) p(c)\} + pen(\beta)

Objective: Maximize $\ell_{\text{obs}} = \iiint \ell_{\text{comp}} dX_{\text{mis}} dc d\gamma$.

Monte Carlo EM? Expensive to generate a large number of samples.

⇒ Stochastic Approximation EM (Lavielle 2014)

Adapted SAEM algorithm

Monte Carlo EM? Expensive to generate a large number of samples.

- ⇒ Stochastic Approximation EM (Lavielle 2014)
 - Estep: $Q^t = \mathbb{E}(\ell_{\text{comp}})$ wrt $p(X_{\text{mis}}, \gamma, c, \theta \mid y, X_{\text{obs}}, \beta^t, \sigma^t, \mu^t, \Sigma^t)$.
 - Simulation: draw one sample $(X_{\min}^t, \gamma^t, c^t, \theta^t)$ from

$$p(X_{\text{mis}}, \gamma, c, \theta \mid y, X_{\text{obs}}, \beta^{t-1}, \sigma^{t-1}, \mu^{t-1}, \Sigma^{t-1});$$
[Gibbs sampling]

• Stochastic approximation: update function Q with

$$Q^{t} = Q^{t-1} + \eta_{t} \left(\ell_{\text{comp}} \Big|_{X_{\text{mis}}^{t}, \gamma^{t}, c^{t}, \theta^{t}} - Q^{t-1} \right).$$

• M step: β^{t+1} , σ^{t+1} , μ^{t+1} , $\Sigma^{t+1} = \arg \max Q^{t+1}$. [Proximal gradient descent, Shrinkage of covariance]

Details of initialization, generating samples and optimization are in the draft (available online)

Install package:

```
library(devtools)
install_github("wjiang94/ABSLOPE")
```

Install package:

```
library(devtools)
install_github("wjiang94/ABSLOPE")
```

Main algorithm:

```
lambda = create_lambda_bhq(ncol(X),fdr=0.10)
list.res = ABSLOPE(X, y, lambda, a=2/p, b=1-2/p)
```

Install package:

```
library(devtools)
install_github("wjiang94/ABSLOPE")
```

Main algorithm:

```
lambda = create_lambda_bhq(ncol(X),fdr=0.10)
list.res = ABSLOPE(X, y, lambda, a=2/p, b=1-2/p)
```

A fast and simplified algorithm (Rcpp):

```
list.res.approx = ABSLOPE.approx(X, y, lambda)
```

Install package:

```
library(devtools)
install_github("wjiang94/ABSLOPE")
```

Main algorithm:

```
lambda = create_lambda_bhq(ncol(X),fdr=0.10)
list.res = ABSLOPE(X, y, lambda, a=2/p, b=1-2/p)
```

A fast and simplified algorithm (Rcpp):

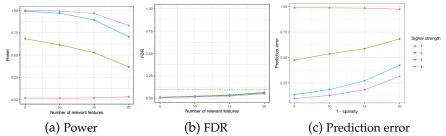
```
list.res.approx = ABSLOPE.approx(X, y, lambda)
```

Values:

list.res\$beta list.res\$gamma

Simulation study (200 rep. \Rightarrow average)

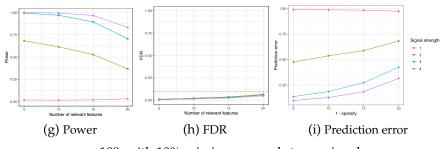
n = p = 100, no correlation and 10% missingness



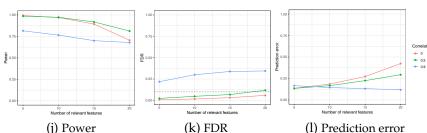
X

Simulation study (200 rep. \Rightarrow average)

n = p = 100, no correlation and 10% missingness



n = p = 100, with 10% missingness and strong signal



Method comparison

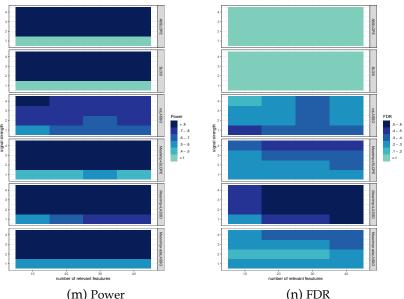
- ABSLOPE and ABSLOPE.approx
- ncLASSO: non convex LASSO (Loh and Wainwright, 2012)
- MeanImp + SLOPE: Mean imputation followed by SLOPE with known σ
- MeanImp + LASSO: Mean imputation followed by LASSO, with λ tuned by cross validation
- MeanImp + adaLASSO: Mean imputation followed by adaptive LASSO (Zou, 2006)

In the SLOPE type methods, λ = BH sequence which controls the FDR at level 0.1

X

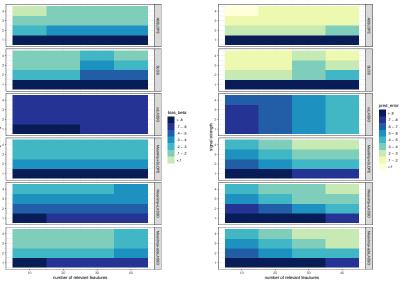
Method comparison (200 rep. \Rightarrow average)

 $500{\times}500$ dataset, 10% missingness, with correlation



Method comparison (200 rep. \Rightarrow average)

 500×500 dataset, 10% missingness, with correlation



(a) Bias of β

(b) Prediction error

Computational cost

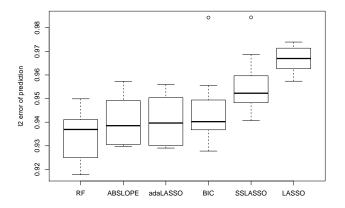
Execution time (seconds)	n	= p = 1	00	n = p = 500			
for one simulation	min	mean	max	min	mean	max	
ABSLOPE	12.83	14.33	20.98	646.53	696.09	975.73	
ABSLOPE.approx	0.31	0.34	0.66	14.23	15.07	29.52	
ncLASSO	16.38	20.89	51.35	91.90	100.71	171.00	
MeanImp + SLOPE	0.01	0.02	0.09	0.24	0.28	0.53	
MeanImp + LASSO	0.10	0.14	0.32	1.75	1.85	3.06	

[Fast implementation: Parallel computing + Rcpp (C++)]

More on the real data...

 $TraumaBase:\ Measurements \stackrel{Predict}{\longrightarrow} Platelet$

Cross-validation: random splits to training and test sets $\times\,10$



- Comparable to random forest
- Interpretable model selection and estimation results

Conclusion & Future research

Conclusion:

- ABSLOPE penalizes larger coefficients more stringently to control FDR, meanwhile it applies a weighting matrix to improve the estimation;
- Modeling in a Bayesian framework gives detailed structure of predictors as sparsity and signal strength;
- Simulation study shows that ABSLOPE is competitive to other methods in terms of power, FDR and prediction error.

Future research:

- · Consider categorical or mixed data
- Deal with other missing mechanisms