

mwshiny: Connecting Shiny Across Multiple Windows

By **Hannah De los Santos**, John Erickson, Kristin P. Bennett

Rensselaer Polytechnic Institute

What is Shiny?

Shiny lets users develop interactive web applications (apps) with only R app.R

Examples from RStudio Shiny Gallery: https://shiny.rstudio.com/gallery/

A Problem: Shiny apps have only one window!

▶ Shiny apps only span one window, and space is limited

- You can alleviate this problem by adding separate tabs, but it's difficult to compare outputs
- Examples from RStudio Shiny Gallery: https://shiny.rstudio.com/gallery/

We Live In a Multi-Monitor World

Multiple Monitors at a Workstation

Controller Driving External Monitor

mwshiny: Multi-Window Shiny

- mwshiny extends Shiny across multiple separate windows
- Uses Shiny's syntax and conventions, so not much additionally to learn

mwshiny does this by breaking app development into an easy workflow:

User Interface Server Computation Server Output

Mwshiny: User Interface Development

- Specify each window with user interface arguments:
 - Window titles (win_titles): a vector of strings
 - User interfaces (ui_win): a list of traditional Shiny Uls corresponding to each title

Example:

```
win_titles <- c("Controller", "Scatter")
ui_win <- list()
ui_win[[1]] <- fluidPage(...) # controller
ui_win[[2]] <- fluidPage(...) # scatter</pre>
```


mwshiny: Server Calculations

- ▶ Observe events and create variables for output to be rendered:
 - Server calculations (serv_calc): a list of functions of the form function(calc, sess), where:
 - <u>calc</u>: reactive variable that contains Shiny input variables, as well as a place to put calculated variables
 - <u>sess</u>: traditional Shiny server session variable

Example:

```
serv_calc <- list()

serv_calc[[1]] <- function(calc, sess) {
  observeEvent(calc$go, {
    calc[["sub.df"]] <- data.frame(calc$go)
  })
}</pre>
```

mwshiny: Server Output

- ▶ Render output based on input and calculated variables:
 - Server output (serv_out): a named list of functions of the form function(calc, sess), which returns a render() result, and is named corresponding to the output ID

Example:

```
serv_out <- list()

serv_out[["iris_scatter"]] <- function(calc, sess){
  renderPlot({
    if (!is.null(calc$sub.df)) {
       ggplot(calc$sub.df)...
    }
  })
}</pre>
```


mwshiny: Breaking Down the Workflow

- Separating server into computation and output clarifies workflow
- ▶ Enhanced by list and function structure of mwsApp() variables

Examining mwshiny's Workflow Through Three Case Studies

Case I:

Multiple Monitors at a Workstation

Case 2:

Controller Driving External Monitor

Case 3:

Alternative Visualization Structures

Case 1: Examining Population Dynamics Using Two Monitors

- Use 2010 US Census to examine population statistics at state and county levels
- ▶ Begin by defining our user interfaces for each window:

```
win_titles <- c("Controller", "Map")
ui_list <- list()</pre>
```

```
ui_list[["Controller"]] <- fluidPage(...
    sidebarLayout(
        sidebarPanel(
            selectInput("stat", "Which statistic would
you like to visualize?", choices = stat_choi),...
        actionButton("go", "Visualize!")),
    mainPanel(
        tabsetPanel(
        tabPanel("Aggregate Dynamics",
            plotOutput("overall_dens"), ...
        ),...))))</pre>
```

```
ui_list[["Map"]] <- fluidPage(
    ...
    plotlyOutput("map", height =
    "1000px"),
    ...
)</pre>
```

Download scripts on Github:

Case 1: Server Calculations

We then calculate variables based on which states or counties we've chosen that are required for visualizations:

```
serv_calc <- list()

serv_calc[[1]] <- function(calc, sess) {
   observeEvent(calc$go, {
        ...
        calc[["over_df"]] <- ...
        calc[["state_df"]] <- ...
        calc[["merge_pop"]] <- ...
        ...
        ...
        })
}</pre>
```

▶ These will be used in rendering our plots

Case 1: Server Output

In this case, we have our three outputs based on these calculations:

```
serv_out <- list()
```


Download scripts on Github: https://github.com/delosh653/mwshiny-examples

Case 1: Result

▶ Putting all this together, we end up with our multi-monitor system:

Case 2: Using an External Controller to Drive Cultural Awareness

- We next have a controller (phone, tablet) driving an external monitor in an art museum, so patrons can learn more about their favorite artists
- Begin by defining UI:

```
win_titles <- c("Controller", "Art_Monitor")
ui_list <- list()</pre>
```

Inputs

```
ui_list[["Controller"]] <-
fluidPage(...
    sidebarLayout(
        sidebarPanel(
            selectInput("art_wait",
...), ...)))</pre>
```

Outputs

Case 2: Server Computation and Server Output

Server Computation

Server Outputs

```
serv_out <- list()

serv_out[["info"]] <-
    function(calc, sess){...}

serv_out[["artist"]] <- ...

serv_out[["painting_1"]] <- ...

serv_out[["painting_2"]] <- ...

serv_out[["painting_3"]] <- ...

serv_out[["map"]] <- ...</pre>
```


Information from Wikipedia

Download scripts on Github: https://github.com/delosh653/mwshiny-examples

Case 2: Result

▶ With all these pieces, we end up with our ideal monitor control situation:

Case 3: An Immersive Shiny Application with the Rensselaer Campfire

 The Rensselaer Campfire's 3D structure enhances knowledge discovery by reducing cognitive load

Users surround and interact with the Campfire to explore their data

Case 3: Using the Campfire to Explore Circadian Rhythm Data

- In this case study, we use the Campfire to explore the function of circadian rhythms:
 - → ~24-hour cycles reinforced by external cues (light)
 - In mouse data, they are amplitude-changing cosine waves
 - Interrupting rhythms leads to increased health risk of many diseases (cancer, diabetes, etc.)
- Use the Campfire to explore different functions of circadian genes and how they interact with each other

Damped

ENCORE application: https://github.com/delosh653/ENCORE

Download scripts on Github: https://github.com/delosh653/mwshiny-examples

Case 3: User Interface Development

As always, we begin with what we want our user interfaces to look like:

```
win_titles <- c("Controller", "Wall", "Floor")
ui_list <- list()</pre>
```

```
ui win[["Controller"]] <- fluidPage(</pre>
  h2("Explore the function of circadian rhythms using
the campfire!"),
  sidebarLayout (
    sidebarPanel(
      selectInput("new path", "Which GO Term would you
like to examine?",
        choices = c("metabolic process" = "GO:0008152",
    mainPanel()
```

```
ui_win[["Wall"]] <- div(
    d3Output("wall", height =
"663px")
)

ui_win[["Floor"]] <- div(
    d3Output("floor", height
= "895px")
)</pre>
```

Case 3: Server Calculations and Output

Server Computation

```
serv_calc <- list()

serv_calc[[1]] <- function(serverValues, sess){
  observeEvent(serverValues$new_path, {...})
}

serv_calc[[2]] <- function(serverValues, sess){
  observeEvent(serverValues$dark, {...})
}

serv_calc[[3]] <- function(serverValues, sess){
  observeEvent(serverValues$undark, {...})
}</pre>
```

Server Outputs

```
serv out <- list()</pre>
serv out[["wall"]] <-</pre>
     function(calc, sess) {...}
serv out[["floor"]] <- ...</pre>
```

Case 3: Result

Once we've gone through our workflow, we can see our example for the function "metabolic process" in the Campfire:

Full Campfire

Hovering to see connections for Rps I I

Summary: Multi-Window Shiny (mwshiny)

- mwshiny extends standard Shiny to have multiple windows
- mwshiny requires a breaks down Shiny workflow further to increase clarity
- Presented mwshiny's efficacy in three scenarios:
 - I. Multi-monitor systems (U.S. Population Dynamics)
 - Controller-driven monitor (Art Cultural Exploration)
 - 3. Alternative visualizations in the Campfire (Circadian Rhythm Function)

Acknowledgements

▶ Thank you!

- Hurley lab: Jennifer Hurley, Emily Collins, Meaghan Jankowski
- ▶ IDEA lab: Kristin Bennett, John Erickson

Support:

- National Science Foundation
- Rensselaer Polytechnic Institute
- National Institutes of Health

The Hurley lab hangin' out.

