mwshiny: Connecting Shiny
Across Multiple Windows

By Hannah De los Santos, John Erickson, Kristin P. Bennett

Rensselaer Polytechnic Institute

What is Shiny?

» Shiny lets users develop interactive web applications (apps) with only R

app.R

/ T

ui server(input, output, session)

\

shinyApp(ui, server)
4/M. ‘ \

S N S TS A ¢ S
PR s L L 5% e DT
\ e (0 v can Aove CIIN . AT N N he 3 AT
. - MAS A PR AL g Lo A
aca » . 4R e AV - L
5 4] " PO N
L 1 " | s SN A = >
) * . S g > 7 b iy

Examples from RStudio Shiny Gallery: https://shiny.rstudio.com/gallery/

A Problem: Shiny apps have only one window!

» Shiny apps only span one window, and space is limited

Superzip Interactive map Data explorer

—

""" KOG CTEm
! A, S ‘ © Saskatoon ‘} ‘ :

Ly ZIP explorer

"o Vancouver i
B het T, .. = it - Color

Is SuperZIP? -

...... treal

Siz8 it - h Halifax

.| Population v |
s =

SuperZIP score (visiblé zips)
e Chihuahuay
Gulf of Mio

II'I'II'.IIIIIH-
Mexico

La Habana 80 100 Anti

FrEquency

° Monterrey,

México

Mazatlan

superzip
- no Guadalajara®.
° Puebla

Ha
¥ER 2 Charles Murra 1 D12 |amaica aSanto'Doming
@3))' Y : Leaﬂethaps by Hapbox

» You can alleviate this problem by addlng separate tabs, but it’s difficult to
compare outputs

» Examples from RStudio Shiny Gallery: https://shiny.rstudio.com/gallery/

Méridae 2 Cancun " Percentile

We Live In a Multi-Monitor World

Multiple Monitors at a

Workstation Controller Driving

External Monitor

mwshiny: Multi-Window Shiny

» mwshiny extends Shiny across multiple separate windows

» Uses Shiny’s syntax and conventions, so not much additionally to learn

» mwshiny does this by breaking app development into an easy workflow:

User Interface | Server. | Server
Development Computation Output

On CRAN as: mwshiny

Mwshiny: User Interface Development

» Specify each window with user interface

arguments:
Window titles (win_titles): a vector of strings

User interfaces (ui_win):a list of traditional Shiny
Uls corresponding to each title

Example:

win titles <- c("Controller","Scatter")

ul win <- list ()
ui win[[1]] <- fluidPage(..) # controller
ui win[[2]] <- fluidPage(..) # scatter

|

Iris Dataset Explorer: Scatter
1os Compansons

mwshiny: Server Calculations

» Observe events and create variables for output to be rendered:

Server calculations (serv_calc): a list of functions of the form function(calc, sess),

where:

calc: reactive variable that contains Shiny input variables, as well as a place to put
calculated variables

sess: traditional Shiny server session variable

Example:

serv _calc <- list ()

serv calc[[1l]] <- function(calc, sess){

observeEvent (calcSgo,
calc[["sub.df"]] <- data.frame (calcS$go)

})

mwshiny: Server Output

» Render output based on input and calculated variables:

Server output (serv_out): a named list of functions of the form function(calc, sess),
which returns a render() result, and is named corresponding to the output ID

Example:
serv_out <- list()
serv _out[["iris scatter"]] <- function(calc, sess) { il
renderPlot ({
if (!is.null(calcSsub.df)) { .

ggplot (calc$sub.df)..
}

})

mwshiny: Breaking Down the Workilow

User Interface | Server | Server

Development Computation Output

\—'—l

mwsApp (win titles, ui win, serv calc, serv out, depend)

» Separating server into computation and output clarifies workflow

» Enhanced by list and function structure of mwsApp() variables

Examining mwshiny’s Workflow Through Three
Case Studies

Case |: Case 3:

Multiple Monitors at a

Workstation Controller Driving | Visualization Structures
External Monitor

Alternative

Download scripts on Github:
https://github.com/delosh653/mwshiny-examples

Case 1: Examining Population Dynamics Using

Two Monitors

» Use 2010 US Census to examine population statistics at state and

county levels

» Begin by defining our user interfaces for each window:

ui list <- list()

win titles <- c("Controller",

"Map ")

ui list[["Controller"]]
sidebarLayout (
sidebarPanel (

selectInput ("stat",

<- fluidPage (...

"Which statistic would

you like to visualize?", choices = stat choi),..
actionButton("go", "Visualize!")),
mainPanel (
tabsetPanel (

tabPanel ("Aggregate Dynamics",
plotOutput ("overall dens"), ..

) 7))))

ul list[["Map"]] <- fluidPage (

plotlyOutput ("map", height =
"1000px"),

)

Download scripts on Github:
https://github.com/delosh653/mwshiny-examples

Case 1: Server Calculations

» We then calculate variables based on which states or counties we’ve

chosen that are required for visualizations:

serv _calc <- list()

serv_calc[[1]] <- function(calc,
observeEvent (calcSgo,

calc[["over df"]] <- .
calc[["state df"]] <- ..
calc[["merge pop"]] <- ..

})

sess) {

» These will be used in rendering our plots

Download scripts on Github:
https://github.com/delosh653/mwshiny-examples

Case 1: Server Output

» In this case, we have our three outputs based on these calculations:

serv_out <- list ()

serv_out[["overall dens"]]
<- function(calc, sess) {
renderPlot ({
ggplot (calcSover df,..)+

})

serv _out[[“state dens"]] <-
function(calc, sess) {
renderPlot ({
ggplot (calcSstate df,..)+

})

serv_out[["map"]] <-
function(calc, sess) {
renderPlotly ({
calcSmerge pop %>%
group by (group)
plot mapbox() ...

Q QO
5>%

v

Download scripts on Github:

https://github.com/delosh653/mwshiny-examples

Case 1: Result

» Putting all this together, we end up with our multi-monitor system:

Exploring Population Dynamics with mwshiny

Download scripts on Github:
https://github.com/delosh653/mwshiny-examples

Case 2: Using an External Controller to Drive
Cultural Awareness

» We next have a controller (phone, tablet) driving an

external monitor in an art museum, so patrons can
learn more about their favorite artists

» Begin by defining Ul:

ul list <- list()

win titles <- c("Controller", ™“Art Monitor")

Inputs Outputs
uli list[["Controller"]] <- ul list[["Art Monitor"]] <-
fluidPage (.. fluidPage (..
sidebarLayout (htmlOutput ("info")
sidebarPanel (tabPanel ("Artist", ..

)y

selectInput ("art wait",

w)))

htmlOutput ("artist"))
)

Download scripts on Github:
https://github.com/delosh653/mwshiny-examples

Case 2: Server Computation and Server Output

Server Computation

Server Outputs

serv_calc <- list()

serv _calc[[1l]] <- function(calc, sess) {
observeEvent (calcSgo,
calc[["select tab"]] <- calc$Swhich tab
calc[["art person"]] <- calcSart wait
calc[["art born"]] <- artist info..
updateTabsetPanel (sess, "art",
selected = calcSselect tab)

})

serv_out <- list ()

serv out[["info"]] <-
function (calc, sess) {..}
serv _out[[Yartist"]] <- .

serv _out[[“painting 1"]] <- ..
serv _out[[“palinting 2"]] <- ..
serv _out[[“palinting 3"]] <- ..
serv_out[[Ymap"]] <- ..

Information from Wikipedia

Download scripts on Github:
https://github.com/delosh653/mwshiny-examples

Case 2: Result

» With all these pieces, we end up with our ideal monitor control situation:

Artist Information

Information from Wikipedia

Artist Information

Artist Information

iness and poverty

emation from Wkipeda

The Starry Night (1889)

Learn about some of your favorite artists!

Information from Wikipedia Download scripts on Github:
https://github.com/delosh653/mwshiny-examples

Case 3: An Immersive Shiny Application with
the Rensselaer Campfire

» The Rensselaer Campfire’s 3D structure enhances knowledge discovery
by reducing cognitive load

rectangular wall —

cwcular floor

» Users surround and interact with the Campfire to explore their data

Download scripts on Github:
https://github.com/delosh653/mwshiny-examples

Case 3: Using the Campfire to Explore
Circadian Rhythm Data

» In this case study, we use the Campfire to
explore the function of circadian
rhythms:

~24-hour cycles reinforced by external cues
(light)

In mouse data, they are amplitude-changing
cosine waves

"R

Interrupting rhythms leads to increased health Harmonic

risk of many diseases (cancer, diabetes, etc.)
» Use the Campfire to explore different W \/\/
functions of circadian genes and how they

interact with each other Forced Damped

ENCORE application: https://github.com/delosh653/ENCORE Download scripts on Github:
https://github.com/delosh653/mwshiny-examples

Case 3: User Interface Development

» As always, we begin with what we want our user interfaces to look like:

win titles <- c("Controller", “Wall", “Floor")
ul list <- list()
ul win[["Controller"]] <- fluidPage (ul win[["Wall"]] <- div(
h2 ("Explore the function of circadian rhythms using d30utput ("wall"™, height =
the campfire!"), "663px")
sidebarLayout ()
sidebarPanel ()) - -)
selectInput ("new path", "Which GO Term would you ut_winl["Floor®}] <= d}v(
. . — d30utput ("floor", height
like to examine?", N .
choices = c("metabolic process" = "G0O:0008152", T 835px")
w))

) 1

mainPanel ()

Download scripts on Github:

https://github.com/delosh653/mwshiny-examples

Case 3: Server Calculations and Output

Server Computation

serv_calc <- list()

serv _calc[[1l]] <- function(serverValues,

sess) {

observeEvent (serverValuesSnew path, {..})

}

serv _calc[[2]] <- function(serverValues,
observeEvent (serverValuesSdark, {..})

}

serv _calc[[3]] <- function(serverValues,
observeEvent (serverValuesSundark, {..})

}

sess) {

sess) {

Server Outputs

serv_out <- list ()

serv _out[[Ywall"]] <-
function (calc, sess) {..}

Data from Hughes, et al. (2009)

serv_out[[“flooxr"]] <- ..

Download scripts on Github:
https://github.com/delosh653/mwshiny-examples

Case 3: Result

» Once we've gone through our workflow, we can see our example for the
function “metabolic process” in the Campfire:

Hovering to see

connections for Rps/ |

Data from Hughes, et al. (2009) Download scripts on Github:
https://github.com/delosh653/mwshiny-examples

Full Campfire

Summary: Multi-Window Shiny (mwshiny)

» mwshiny extends standard Shiny to have User '“te"facf Development
muItipIe windows Server Computation
» mwshiny requires a breaks down Shiny Server Output

workflow further to increase clarity

» Presented mwshiny’s efficacy in three scenarios:
Multi-monitor systems (U.S. Population Dynamics)

Controller-driven monitor (Art Cultural
Exploration)

Alternative visualizations in the Campfire (Circadian
Rhythm Function)

Acknowledgements

» Thank you!

Hurley lab: Jennifer Hurley, Emily Collins, Meaghan
Jankowski

IDEA lab: Kristin Bennett, John Erickson

» Support:
National Science Foundation
Rensselaer Polytechnic Institute
National Institutes of Health

The Hurley lab hangin’ out.

