Machine Learning
Infrastructure

July 12th 2019
Savin Goyal

MLINFRA

This is a high-level view of what
Netflix does.

It is probably necessary to get
smarter about everything:

Content acquisition
Marketing
Discovery

Delivery

and more.

ML gets applied everywhere!

CONTENT

1| 988

| cor*_,gr Me |

DIScoverY | PVR ML

DEuveRr’ | @S ML

HAPPY
@ Lo b8 1
ML
% MoNEY!

NETFLIX

Content Valuation

Optimize Production Schedules Screenplay Analysis Using NLP
Predict Quality of Network Intelligent Infrastructure Machine Translation
Fraud Detection :
Beedict Churn Classify Support Tickets Content Tagging

Incremental Impact of Marketing Title Portfolio Optimization

Estimate Word-of-Mouth Effects

Cluster Tweets Optimal CDN Caching

models

prototyping

compute

data

ML Libraries: R, XGBoost, TF etc.

Notebooks: Nteract m

Job Scheduler: Meson &[S[m

Compute Resources: Titus @

Query Engine: Spark Sﬁ‘b”r‘l"(;

Data Lake: S3 S3

2 Airflow
kubernetes

Reality is not that straight-forward:

How to run at scale?

How to access data at scale?

How to schedule the model to update daily?
How to monitor models in production?

How to debug failed production runs?

How to iterate on new versions?

How to collaborate with other users?

ML Libraries

Feature Engineering

Model Deployment

Collaboration Tools

Versioning
Job Scheduler
Compute Resources

Data Warehouse

How much
data scientist
cares

ML Libraries

Feature Engineering

Model Deployment

Collaboration Tools

Versioning

Job Scheduler

Compute Resources

Data Warehouse

How much
infrastructure
is needed

METAFLOW

Translate your domain knowledge to models with low
cognitive overhead using tools you know.

Easy path from exploration to business value.

Collaboration.

ML pipelines. e

Many technical benefits follow
when you do this.

Structure your code as a DAG.
It is a natural way to express ‘ @ @

metaflow("BranchFlowR") %>%
step(
step = "start",
r_function = start,
next_step = c("a", "b")

) %>%

step(
step = "a",
r_function = a,
next_step = "join"

) %>%

step(
step = "b",
r_function = b,
next_step = "join"

) %>%

step(
step = "join",
r_function = join,
next_step = "end",
join = TRUE

) %>%

step(
step = "end",
r_function = end

) %>%

run()

metaflow("BranchFlowR") %>%

r_function = start,
next_step = c("a", "b")

) %>%

step(
step = "a",
r_function = a,
next_step = "join"

) %>%

step(
step = "b",
r_function = b,
next_step = "join"

) %>%

step(
step = "join",
r_function = join,
next_step = "end",
join = TRUE

) %>%

step(
step = "end",
r_function = end

) %>%

run()

metaflow("BranchFlowR") %>%
step(
step = "start",
r_function = start,

2 S BN

step(N
step = "a",
r_function = a,
next_step = "join"

) %>%

step(
step = "b",
r_function = b,
next_step = "join"

) %>%

step(
step = "join",
r_function = join,
next_step = "end",
join = TRUE

) %>%

step(
step = "end",
r_function = end

) %>%

run()

metaflow("BranchFlowR") %>%

Stez(N— start <- function(self) {
step = "start", _ o "
Mo AT T e T Tk mmmmmmmmm = > selfSmy_var <- "hello world
~ Rext.stap = ¢(a", 5" “a }
) %>% AN
step(RN
step = "a", \\\
r_function = a, S
next_step = "join" AN
) %>% SN
step(S
step = "b",
r_function = b,
next_step = "join"
) %>%
step(
step = "join",
r_function = join,
next_step = "end",
join = TRUE
) %>%
step(
step = "end",
r_function = end
) %>%

run()

metaflow("BranchFlowR") %>%

step(start <- function(self) {

step = .Start , selfSmy_var <- "hello world"
r_function = start,

next_step = c("a", "b") }
) %>%
step(
Step = uan'
F = r_function = a,
D 0 a0 O i Lo e & o =
next_step = "join" \ T T —-— e _
) %>% N -
step(\
. llbll \
step =) \
r_function = b, \
TR \
next_step = "join \
) %>% \
step(\\
step = "join", \
r_function = join, \\
next_step = "end", \
join = TRUE AN
) %>% \
\
step(\ a <- function(self) {
step = "end", \\ message (
r_function = end 4 "my_var is : ", selfSmy_var
) %>%)

run() }

metaflow("BranchFlowR") %>% Execute as you WOUId any R COde
step(

step = "start",
r_function = start,
next_step = c("a", "b")

) %>%

step(
step = "a",
r_function = a,
next_step = "join"

) %>%

step(
step = "b",
r_function = b,
next_step = "join"

) %>%

step(
step = "join",
r_function = join,
next_step = "end",
join = TRUE

) %>%

step(
step = "end", o
r_function = end RSC rlpt debug . R

) %>%

run()

metaflow("BranchFlowR") %>% I
o Checkpointing by default

step = "start",
r_function = start,
next_step = c("a", "b")

) %>%

step(
step = "a",
r_function = a,
next_step = "join"

) %>%

step(
step = "b",
r_function = b,
next_step = "join"

) %>%

step(
step = "join",
r_function = join,
next_step = "end",
join = TRUE

) %>%

step(
step = "end", .
Limﬁm=em RSCrlpt debug.R resume

) %>%

run()

Minimize Cognitive 4.!
Overhead =

fit_models <- function(self) {
library(caret)
param <- selfS$input
train_control <- trainControl(
method eVt

Keep using tools and libraries you are number = 5
familiar with. ’

grid <- data.frame(
interaction.depth = param$interaction.depth,
shrinkage = param$8shrinkage,

Dedicate your cognitive bandwidth on n.trees = param$n.trees,
da‘ta Science n.minobsinnode = paramSn.minobsinnode

)

x <- selfSfeatures
y <- selfS$Slabels
gbmfit <- train(

Metaflow stays out of your way.

X = X,
Y=Y
epe » . . . thod = "gbm",
No artificial limitations. Explore freely! tuneGrid = grid,

trControl = train_control,
verbose = FALSE
)
selfSmodel <- gbmfit$finalModel
self$fit <- gbmfitSresults

fit_models <- function(self) {
library(caret

o)
train_control <- trainControl(
method = "cv",

Keep using tools and libraries you are humber = 5
familiar with. ’

grid <- data.frame(
interaction.depth = param$interaction.depth,
shrinkage = param$8shrinkage,

Dedicate your cognitive bandwidth on n.trees = param$n.trees,
da‘ta Science n.minobsinnode = paramSn.minobsinnode
)) I

x <- selfS$features 1
y <- selfS$Slabels

Metaflow stays out of your way. gbmTiT <-TtFaln

XE=EX
Y=y
epe o . . . method = "gbm",
No artificial limitations. Explore freely! cuneGridl= grid.
trControl = train_control,
verbose = FALSE
)
selfSmodel <- gbmfit$finalModel
self$fit <- gbmfitSresults

}

fit_models <- function(self) {
library(caret)
param <- selfS$input
train_control <- trainControl(

. . . thod = "cv",
Keep using tools and libraries you are laber ats
ope .)
famlllar Wlth‘ grid <- data.frame(

interaction.depth = param$interaction.depth,
shrinkage = param$8shrinkage,

Dedicate your cognitive bandwidth on n.trees = param$n.trees,
da‘ta Science n.minobsinnode = paramSn.minobsinnode

)

x <- selfSfeatures
y <- selfS$Slabels
gbmfit <- train(

Metaflow stays out of your way.

X = X,
Y=Y
epe » . . . thod = "gbm",
No artificial limitations. Explore freely! tuneGrid = grid,

trControl = train_control,
verbose = FALSE
[self$model <- gbmfit$finalModel |
Iself$fit <- gbmfitSresults 1

Focus on the following:

e Feature engineering.

e Training logic.

e Format of the output.

library(metaflow)

start <- function(self) {
self$x <- c(10000, 40000, 80000)
}

a <- function(self) {
x <- selfSinput

Metaflow takes the pain away from Fnat e a0 Bl

message (sum(big_matrix))
distractions like:)

metaflow("BigSumFlowR") %>%
step(

e Scalability. step = "start”,

r_function = start,

next_step = "a"
. foreach = "x"
e Scheduling.) %%
step(_ -
decorator("titus", memory=60000, cpu=4),I
. mstep=a R
e Operations. r_function = a,
next_step = "join"
) %>%
step(
step = "join",
next_step = "end",
join = TRUE
) %>%
step(
step = "end"
) %>%
f}JB(aéEdﬁ = -EFégié-)_ :

| want to collaborate with other people T r——
but I don’t want to think about it all the “ProoucTiar VERSION \

. I — {
time! INPLT Lyl ConPuTE MW} 0
DA | L L . :

e Everything is versioned.

Cawr o myg w8

e Everything can be tagged with ¢ {waa))L o
human-readable annotations. ', A TET VERSIDD Wirh i..-,.‘
A~ BETER roV6L e, f
'~ e | S— R — e SSm— y)
. ! i]
e All data artifacts are stored. ! "_‘u.np s ourPoT |
\ . '

A yEry foR MELSs

e Easy access to all code, data, & el Tk ',"_. S)

results.

Monitor models and examine results

-
@_,Jupyter user2019 (autosaved) R on NETFLIX
File Edit View Insert Cell Kernel Widgets Help Not Trusted = ¢ |R (0}
+ < @3B 44 ¥ MRun B C M Code 4 @ nbdiff | View on Commuter | View notebook logs | [Q]nteract = A @ @
In [2]1: 1 library(metaflow.client)
3 housing flow <- flow$new("HousingFlow")
4 summary (housing_flow)
6 latest_successful_run <- housing flow$run(housing flow$latest successful_run)
7 summary (latest_successful_run)
— Flow Summary: HousingFlow
Created At: 2018-04-25 15:39:46
Latest Run: 185
Latest Successful Run: 185
Runs: 92
— Run Summary: 185
Successful: TRUE
Created at: 2019-01-17 00:21:08
Finished at: 2019-01-17 00:30:13
Time: 9.08 mins
I 1312 1 score_data_step <- latest_successful run$step('score data')

summary (score_data_step)

— Step Summary: score_data

Tasks: 1
Created at: 2019-01-17 00:29:08
Finished at: 2019-01-17 00:29:40

Time: 32 secs

Metaflow solves the practical problem

of being able to run the script again by:

Storing immutable snapshots of
code and data.

Managing external dependencies.

Maintaining a detailed audit log of
all past runs, both during
development and in production.

Gets us pretty close to the holy grail of
reproducible research.

O~

‘.‘-a&v- N o e '-..
~ o W W C——— T, C—

L[] !

‘ Vo P e - T—
pnShprhaapiaptiy O B |
::k_’L_HC '
X .' IR~ —— o\. s

5 -

T — -~ o N —— —

, Juu's oW YERS|OpD

Ca” e o »

' LohT
™ | o |

Many more features -

Supports Python and R
High-throughput data access

Deploy models as microservices
Flexible parametrization of workflows
Isolated environments for dependencies

solated ¢ METAFIOW
And more!

Thank youl!

savin@netflix.com
PS: We’re hiring!

MLINFRA

