
nCompiler: generating C++ from R

Perry de Valpine
Environmental Science, Policy & Management

University of California, Berkeley

useR!2019
Toulouse

https://github.com/nimble-dev/nCompiler

Contributors: 
• Daniel Turek, Chris Paciorek, Nicholas Michaud (via contributions to nimble)
• James Duncan

https://github.com/nimble-dev/nCompiler


Outline

• History
• Goals
• Main abstractions, features and current status
• We welcome ideas and contributions.



History

• nCompiler started as an internal tool for nimble.

https://creazilla.com/nodes/1786-model-t-silhouette
https://creativecommons.org/licenses/by/4.0/

https://creazilla.com/nodes/1786-model-t-silhouette
https://creativecommons.org/licenses/by/4.0/


Numerical
Inference for statistical
Models using
Bayesian and
Likelihood
Estimation

r-nimble.org

Funded in part by:

Core Team
Perry de Valpine (co-PI)
Chris Paciorek (co-PI)
Daniel Turek
Nicholas Michaud
Other contributors and 
collaborators:
• Duncan Temple Lang
• Jagadish Babu
• Ras Bodik
• Clifford Anderson-

Bergman
• David Pleydell

• Lauren Ponisio
• Dao Nguyen
• Abel Rodriguez
• Claudia Wehrhan
• Fritz Obermeyer
• Sally Paganin



What is NIMBLE?

X(1) X(2) X(3)

Y(1) Y(2) Y(3)

Statistical model language: 

New dialect of BUGS/JAGS.

Algorithm language

embedded in R

+

“nimble compiler”: 

Generates C++ for each model and algorithm (e.g. MCMC)

De Valpine et al. 2017.  Programming with Models: Writing Statistical Algorithms for General Model Structures with 

NIMBLE.  Journal of Computational and Graphical Statistics. https://doi.org/10.1080/10618600.2016.1172487

https://doi.org/10.1080/10618600.2016.1172487


History

• nCompiler started as an internal tool for nimble.
• The “nimble compiler” works pretty well!
• Maybe it could be a more general tool:
• Gain C++ speed-ups without coding C++ directly.
• Automatically get derivatives, parallelization, and serialization.

• It has some design limitations and concepts particular to nimble.
• nCompiler is a complete re-write with heavy borrowing from nimble.

https://creazilla.com/nodes/1786-model-t-silhouette
https://creativecommons.org/licenses/by/4.0/

https://creazilla.com/nodes/1786-model-t-silhouette
https://creativecommons.org/licenses/by/4.0/


Everything runs 
uncompiled
and compiled.

nFunction

explicit “return”

Argument and return
type-declarations.



Goals

• Code generation from R mathematical 
and distribution functions

• Automatic type determination based on 
declared inputs

• Coding embedded in R via new types of 
“function” and “class”

• Linear algebra via Eigen

• Algorithmic differentiation (AD) via 
CppAD (not released)

• Calls to external libraries or to R

• Basic flow control

Keep what worked well:



Goals

• Code generation from R mathematical 

and distribution functions

• Automatic type determination based on 

declared inputs

• Coding embedded in R via new types of 

“function” and “class”

• Linear algebra via Eigen

• Algorithmic differentiation (AD) via 

CppAD (not released)

• Calls to external libraries or to R

• Basic flow control

• Clarify key abstractions: nFunction, nClass.

• Use Eigen more deeply and Eigen::Tensor 

for math with arbitrary arrays

• Ground-up support for:

• Parallelization (Threading Building 

Blocks)

• Serialization (saving and loading C++ 

objects) (Cereal).

• Use in package development

• Easier integration with hand-written C++

• Better use/integration/compatibility with 

other tools (Rcpp family).

• Extensibility and developer tools

Keep what worked well:

What to add or change:

https://creazilla.com/nodes/2875-birds-on-a-wire-silhouette?tag_id=93

https://creativecommons.org/licenses/by/4.0/

https://creazilla.com/nodes/2875-birds-on-a-wire-silhouette?tag_id=93
https://creativecommons.org/licenses/by/4.0/


Current status: A working skeleton of all 
major components.

https://clipartimage.com/images/clipart-286921.html

https://github.com/nimble-dev/nCompiler

https://clipartimage.com/images/clipart-286921.html
https://github.com/nimble-dev/nCompiler


Everything runs 
uncompiled
and compiled.

nFunction

explicit “return”

Argument and return
type-declarations.





Harness Rcpp

Extend as<> and wrap<> as needed



Use Eigen more deeply.
Use Eigen::Tensor

http://eigen.tuxfamily.org

http://eigen.tuxfamily.org/


Annotate and transform abstract 
syntax tree and symbol table(s) to 
generate C++.



nClass generates a custom R6 class.

Rpublic implemented in R.
Cpublic implemented in C++.

nClass



AD: Algorithmic (or Automatic) Derivatives

Also used by

• TMB (Kristensen, Bell, Skaug, Magnusson, Berg, Nielsen, Maechler, Michelot, Brooks, Forrence, 
Albertsen, & Monnahan).  On CRAN.

• RcppEigenAD (Berridge, Crouchley & Grose).  On CRAN.



AD: Algorithmic (or Automatic) Derivatives

Fixed-length inputs and output

enableDerivs argument

Call via nDerivs

Jacobian:



Parallelization

Allaire, Francois, Ushey, Vandenbrouck, Geelnard, RStudio, Intel, Microsoft
(On CRAN)

Also used by



Parallelization

parallel_for (final syntax TBD)

Variables to copy or share 
across threads.



Argument passing
• By copy
• By reference
• By block reference

Mixing with other C++

Using nCompiler code in packages
• Generate necessary R and C++ into 

package src and inst directories.



Argument passing
• By copy
• By reference
• By block reference

Mixing with other C++

Using nCompiler code in packages
• Generate necessary R and C++ into 

package src and inst directories.



Argument passing
• By copy
• By reference
• By block reference

Mixing with other C++

Using nCompiler code in packages
• Generate necessary R and C++ into 

package src and inst directories.



https://github.com/USCiLab/cereal

Serialization for saving and loading compiled objects.

Also provided by
• Rcereal (Wu, Voorhees and Grant). On CRAN. 

nCompiler generates Cereal code into nClass C++ code.

https://github.com/USCiLab/cereal


Extensibility

<-

fooY

+

A c

Y <- foo(A + c)

Ab
st

ra
ct

 S
yn

ta
x T

re
e

Compilation = clearly defined 
traversals and transformations of 
the tree. 



Extensibility

<-

fooY

+

A c

Y <- foo(A + c)

Ab
st

ra
ct

 S
yn

ta
x T

re
e

Compilation = clearly defined 
traversals and transformations of 
the tree. 

How to handle `<-`, `foo`, or `+`?



Questions? https://github.com/nimble-dev/nCompiler

https://github.com/nimble-dev/nCompiler

