Optimizing children sleeping time using regression and machine learning

MA Alicja Fraś

Poznan University of Economics and Business

Monetary Policy and Financial Markets Department

July 2019

Research data

- 141 observations per child,
- Control variables:
 - ▷ child,
 - > age in days,
 - weekend (binary),
 - night sleeping time from previous day.

Research data

- 141 observations per child,
- Control variables:
 - ▷ child,
 - > age in days,
 - weekend (binary),
 - night sleeping time from previous day.

Research

- Variables:
 - morning waking time,
 - day nap hours (times and duration),
 - extra nap (binary),
 - night sleeping time,
 - > total sleeping hours (night + nap).
- Methods:
 - caret package,
 - neural networks: random forest and boosting,
 - ► GLM.

Research

- Variables:
 - morning waking time,
 - day nap hours (times and duration),
 - extra nap (binary),
 - night sleeping time,
 - > total sleeping hours (night + nap).
- Methods:
 - caret package,
 - neural networks: random forest and boosting,
 - ► GLM.

Night sleeping time = α_0 + $\alpha_1 \times m$ orning waking time + $\alpha_2 \times day nap hours (duration) +$ $\alpha_3 \times extra nap (binary) +$ $\alpha_4 \times child +$ $\alpha_5 \times lagged$ night sleeping time + $\alpha_6 \times age +$ $\alpha_7 \times weekend$

Night sleeping time = α_0 + $\alpha_1 \times m$ orning waking time + $\alpha_2 \times day nap hours (duration) +$ $\alpha_3 \times extra nap (binary) +$ $\alpha_4 \times child +$ $\alpha_5 \times lagged$ night sleeping time + $\alpha_6 \times age +$ $\alpha_7 \times weekend$

weekend -0.191656 noon_sleeping_hours 0.006336

age_days -0.001323 morning_waking_time 0.441198

cept) child_no2 98013 -1.019693 a_nap night_sleeping_time_lag 63951 0.191926

(Intercept) 16.098013 was_extra_nap ni -0.463951

> One hour earlier wake up in the morning => 26 minutes earlier sleeping time in the evening

Coefficients:

- Best night sleeping time prediction with **random forest**
- Simulation: subtract one hour for the morning sleeping time in the dataset and predict evening sleeping time
- Night sleeping time moved from 21:20 to 21:17

- Best night sleeping time prediction with **random forest**
- Simulation: subtract one hour for the morning sleeping time in the dataset and predict evening sleeping time
- Night sleeping time moved from 21:20 to 21:17

The second approach: total sleeping time prediction

Total sleeping time = α_0 +

 $\alpha_1 \times morning waking time +$

 $\alpha_2 \times day nap hours (duration) +$

 $\alpha_3 \times extra nap (binary) +$

 $\alpha_4 \times night \ sleeping \ time +$

 $\alpha_5 \times child +$

 $\alpha_6 \times lagged$ night sleeping time +

 $\alpha_7 \times age +$

 $\alpha_8 \times weekend$

The second approach: total sleeping time prediction

- Best total sleeping time prediction with **boosting**
- Simulation:
 - > morning sleeping time -1
 - > night sleeping time -1
 - predict total sleeping hours
- Total sleeping hours decreased from 11 hours and 23 minutes to 11 hours and 5 minutes.

The second approach: total sleeping time prediction

- Best total sleeping time prediction with **boosting**
- Simulation:
 - > morning sleeping time -1
 - > night sleeping time -1
 - predict total sleeping hours
- Total sleeping hours decreased from 11 hours and 23 minutes to 11 hours and 5 minutes.

Conclusions

- I was wrong.
- It is hard to predict, when will the kids finally fall asleep.
- It is the best to let our kids sleep as long as they want to.

Questions?

alicja.m.fras@gmail.com

