Optimizing children sleeping time

 using regression and machine learningMA Alicja Fraś
Poznan University of Economics and Business
Monetary Policy and Financial Markets Department

$$
\text { July } 2019
$$

Research data

- 141 observations per child,
- Control variables:
$>$ child,
> age in days,
$>$ weekend (binary),
> night sleeping time from previous day.

Research data

- 141 observations per child,
- Control variables:
$>$ child,
> age in days,
$>$ weekend (binary),
> night sleeping time from previous day.

Research

- Variables:
> morning waking time,
$>$ day nap hours (times and duration),
$>$ extra nap (binary),
> night sleeping time,
$>$ total sleeping hours (night + nap).
- Methods:
> caret package,
> neural networks: random forest and boosting,
$>$ GLM.

Research

- Variables:
> morning waking time,
$>$ day nap hours (times and duration),
$>$ extra nap (binary),
> night sleeping time,
$>$ total sleeping hours (night + nap).
- Methods:
> caret package,
> neural networks: random forest and boosting,
$>$ GLM.

The first approach: night sleeping time prediction

$$
\begin{aligned}
& \quad \text { Night sleeping time }=\alpha_{0}+ \\
& \alpha_{1} \times \text { morning waking time }+ \\
& \alpha_{2} \times \text { day nap hours }(\text { duration })+ \\
& \alpha_{3} \times \text { extra nap }(\text { binary })+ \\
& \alpha_{4} \times \text { child }+ \\
& \alpha_{5} \times \text { lagged night sleeping time }+ \\
& \alpha_{6} \times \text { age }+ \\
& \alpha_{7} \times \text { weekend }
\end{aligned}
$$

The first approach: night sleeping time prediction

$$
\begin{aligned}
& \quad \text { Night sleeping time }=\alpha_{0}+ \\
& \alpha_{1} \times \text { morning waking time }+ \\
& \alpha_{2} \times \text { day nap hours }(\text { duration })+ \\
& \alpha_{3} \times \text { extra nap }(\text { binary })+ \\
& \alpha_{4} \times \text { child }+ \\
& \alpha_{5} \times \text { lagged night sleeping time }+ \\
& \alpha_{6} \times \text { age }+ \\
& \alpha_{7} \times \text { weekend }
\end{aligned}
$$

The first approach: night sleeping time prediction

Coefficients:			
(Intercept)	child_no2	age_days	weekend
16.098013	-1.019693	-0.001323	-0.191656
was_extra_nap	night_sleeping_time_1ag	morning_waking_time	noon_sleeping_hours
-0.463951	0.191926	0.441198	0.006336

One hour earlier wake up in the morning

$$
\Rightarrow
$$

26 minutes earlier sleeping time in the evening

The first approach: night sleeping time prediction

- Best night sleeping time prediction with random forest
- Simulation: subtract one hour for the morning sleeping time in the dataset and predict evening sleeping time
- Night sleeping time moved from 21:20 to 21:17

The first approach: night sleeping time prediction

- Best night sleeping time prediction with random forest
- Simulation: subtract one hour for the morning sleeping time in the dataset and predict evening sleeping time
- Night sleeping time moved from 21:20 to 21:17

The second approach: total sleeping time prediction

$$
\begin{aligned}
& \quad \text { Total sleeping time }=\alpha_{0}+ \\
& \alpha_{1} \times \text { morning waking time }+ \\
& \alpha_{2} \times \text { day nap hours }(\text { duration })+ \\
& \alpha_{3} \times \text { extra nap }(\text { binary })+ \\
& \alpha_{4} \times \text { night sleeping time }+ \\
& \alpha_{5} \times \text { child }+ \\
& \alpha_{6} \times \text { lagged night sleeping time }+ \\
& \alpha_{7} \times \text { age }+ \\
& \alpha_{8} \times \text { weekend }
\end{aligned}
$$

The second approach: total sleeping time prediction

- Best total sleeping time prediction with boosting
- Simulation:
> morning sleeping time - 1
> night sleeping time - 1
> predict total sleeping hours
- Total sleeping hours decreased from 11 hours and 23 minutes to 11 hours and 5 minutes.

The second approach: total sleeping time prediction

- Best total sleeping time prediction with boosting
- Simulation:
> morning sleeping time - 1
> night sleeping time - 1
> predict total sleeping hours
- Total sleeping hours decreased from 11 hours and 23 minutes to 11 hours and 5 minutes.

Conclusions

- I was wrong.
- It is hard to predict, when will the kids finally fall asleep.
- It is the best to let our kids sleep as long as they want to.

Questions?

alicja.m.fras@gmail.com

