

Thomas Petzoldt¹, David Kneis¹, Stefanie Hess^{1,2}, John Turnidge³ and Thomas¹ Berendonk

antibioticR An R package to identify resistant populations in environmental bacteria

¹ TU Dresden, Institute of Hydrobiology, Germany
² University Helsinki, Department of Microbiology, Finland
³ University Adelaide, Australia

Antibiotics made modern medicine possible

Sir Alexander Fleming (1881 – 1955)

- knighted by British king in 1944
- Nobel prize in medicine 1945
- (re-)discovered penicillin in 1928 "by accident"
- isolation of penicillin
 - → made modern medicine possible

Calibuon at English Wikibooks [Public domain] https://commons.wikimedia.org/wiki/File:Alexander_Fleming.jpg

• discovered already, that resistance develops if penicillin application is too low or too short

#Documentary #Anitibiotikakrise #ResistanceFighters RESISTANCE FIGHTERS - The Global Antibiotics Crisis | Trailer (English, 1'30", HD)

"Drug resistant bacteria kill 700.000 citizens each year." "This figure is rising dramatically." "Resistant microbes will prevail the near future."

https://www.broadview.tv/en/production/resistance-fighters-the-global-antibiotics-crisis/

Our contribution

Clinical context

- Susceptibility of microbial species
- Selection of suitable antibiotics
- Effective dosing

Environmental context

- Sources of resistance
- Influence of environmental factors
- Effectivity of reduction measures
- Evolution and transmission of genes

Large international organizations, e.g. US-FDA, CLSI, EUCAST

Careful characterisation of resistance with Excel-Tools and expert judgment

Aquatic and Environmental Sciences

→ need automatic and reproducible tools for screening and systems understanding.

TECHNISCHE UNIVERSITÄT DRESDEN antibioticR Thomas Petzoldt useR!2019 Toulouse

Inhibition Zone Diameter (ZD) Similar to the method of Fleming

(3) susceptibility tests

- single strain
- multiple antibiotics

Image:

Ioannis Kampouris, Institute of Hydrobiology Standard: EUCAST 2015-01-01

Zone diameter test repeated thousands of times → multi-modal distribution

Ciprofloxacin, Eucast

How to separate the sub-populations?

Ecosystems, rivers, wasterwater treatment:

\rightarrow Transmission, selection, gene transfer

 \rightarrow Reproducible indicators needed

Approach 1: Kernel density estimation

 \rightarrow allows estimation of quantiles (mode, 0.99, ...) and area

Approach 2: ECOFFinder algorithm

https://weblab.hydro.tu-dresden.de/ecoffinder/

Approach 3: Fit the complete mixture distribution

Step 1: peak hunting algorithm

Step 2: Maximum likelihood estimation for binned data (personal thanks to Brian Ripley)

Leftmost component can be exponential, all others normal distributions

en, nn, enn, nnn, ennn,, ennnnn

antibioticR Thomas Petzoldt useR!2019 Toulouse

Univariate mixture with overlapping components Quantiles of all distribution components Plotting functions

ZD distribution with resistant (orange), intermediate (green) and wild-type sub-population (blue), L = proportions of the components, cutoff = 1% quantile of the wild type

antibioticR Thomas Petzoldt useR!2019 Toulouse

Own method

- Automatic
- Scriptable -
- All distribution components

Both methods available in antibioticR

Comparison between own data from a sewer system with EUCAST reference data from clinical populations

Hypothesis, that the wild type of bacteria in a sewer system shifted to higher resistance with repect to common antibiotics. (E. coli, Sewer System of Dresden, Germany, Data: Project antiResist)

https://github.com/tpetzoldt/antibioticR

https://weblab.hydro.tu-dresden.de/ecoffinder/

antibioticR Thomas Petzoldt useR!2019 Toulouse

Slide 15

