Measuring inequalities from space Analysis of satellite raster images with R

Piotr Wójcik pwojcik@wne.uw.edu.pl Data Science Lab, dslab.wne.uw.edu.pl

UseR! 2019 Toulouse – France July 9-12, 2019

University of Warsaw

Faculty of Economic Sciences

My bio

- assistant professor at the University of Warsaw, Faculty of Economic Sciences (FES UW) since 2008
- founder and head of Data Science Lab at FES UW: dslab.wne.uw.edu.pl
- analysis of night-time lights intensity data and day-time satellite images is **one of our projects** in DSLab
- many years of professional experience as a quantitative analyst in the financial, telecommunications and marketing research sector
- my LinkedIn profile: www.linkedin.com/in/pwojcik

Night-time lights intensity (NTLI) data

- NTLI data is based on **satellite images** collected and processed by the National Oceanic and Athmosferic Administration (NOAA)
- NOAA provides two types of NTLI data:
 - Version 4 DMSP-OLS average annual data for the period 1992–2013
 - Version 1 **VIIRS** monthly data since April 2012 and averaged annual (only 2015 and 2016)
- NTLI is measured for **pixels** with the size of 30 \times 30 (DMSP-OLS) or 15x15 (VIIRS) arc seconds
- it relates to **less than 1 km2** on the equator (about 0.5 km2 in Europe or USA)
- for each pixel NTLI data is provided in digital numbers (DN) on the scale 0–63 (DMSP-OLS) or 0–16384 (VIIRS)

3 / 15

Night-time lights intensity (NTLI) data

- NTLI data is based on **satellite images** collected and processed by the National Oceanic and Athmosferic Administration (NOAA)
- NOAA provides two types of NTLI data:
 - Version 4 DMSP-OLS average annual data for the period 1992–2013
 - Version 1 **VIIRS** monthly data since April 2012 and averaged annual (only 2015 and 2016)
- NTLI is measured for **pixels** with the size of 30 \times 30 (DMSP-OLS) or 15x15 (VIIRS) arc seconds
- it relates to **less than 1 km2** on the equator (about 0.5 km2 in Europe or USA)
- for each pixel NTLI data is provided in digital numbers (DN) on the scale 0–63 (DMSP-OLS) or 0–16384 (VIIRS)

Economic and business applications of NTLI data

- can be easily agregated for any territorial units
- uniformly measured across the globe

regions)

- independent of politicians and response rates in surveys
- increasingly used as a **proxy of economic activities** at the regional and local level
- researchers find **strong positive relationship** between NTLI and GDP, and population at the **national level**
- at the subnational level the relationship is usually weaker and unstable
- it has informational value for **countries with poor quality of national income accounts**
- proxies for economic well-being or market potential can be calculated for non-administrative areas (e.g. specicic business

5 / 15

Economic and business applications of NTLI data

- can be easily agregated for any territorial units
- uniformly measured across the globe

regions)

- independent of politicians and response rates in surveys
- increasingly used as a **proxy of economic activities** at the regional and local level
- researchers find **strong positive relationship** between NTLI and GDP, and population at the **national level**
- at the subnational level the relationship is usually weaker and unstable
- it has informational value for **countries with poor quality of national income accounts**
- proxies for economic well-being or market potential can be calculated for non-administrative areas (e.g. specicic business

Let the NTLI data speak

- DMSP-OLS data for 2013 used in examples
- full codes available on: github.com/ptwojcik/UseR2019

UseR! Toulouse - France, July 9-12, 2019

Step 1. importing raster data and map into R

importing NTLI data with the raster::raster()importing map data (e.g. shapefile) with sf::st_read()

Step 2. checking and adjusting

- checking and adjusting projection of spatial coordinates in both objects with raster::crs() and sf::st_transform()
- checking validity of sf object geometries with sf::st_is_valid()
 value and adjusting if needed with lwgeom::st_make_valid()
 value valid()
 value value valid()
 value val

Step 3. limitation of the extent of raster data

• limitation of raster data to the extent of the sf object with raster::extent(), raster::crop() and raster::mask()

10 / 15

Step 4. aggregation to spatial units

 aggregation of NTLI data for spatial units - raster::extract(), much faster if also tabularaster::cellnumbers() used

Correlation with GDP and population for EU countries

Night lights vs GDP in 2013 in EU countries

Correlation with GDP and population for EU regions

Correlation with GDP and population for US states

Summary and thank you

- R has great tools for raster data and spatial data analysis
- NTLI is a promising proxy for market potential or economic well-being
- however, the relationship is not linear, urban areas are specific
- building a model predicting well-being based on NTLI data required
- modern applications use also high-resolution daytime satellite images and image recognition tools
- full codes for above examples available on: github.com/ptwojcik/UseR2019

THANK YOU FOR YOUR ATTENTION!

