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Bayesian Optimization context
Black-box model with multiple outputs:

f : x ∈ X ⊂ Rd 7→ Rp

Working hypotheses: f is expensive to compute, with complex
outputs:

I non-convex
I no derivatives available
I possible observation noise
I 2 ≤ p ≤ 20
I X is typically a box of dimension 2 ≤ d ≤ 100

Examples:

I engineering design applications
I hyperparameter tuning in Machine Learning



Multi-objective optimization

MOP :


minx∈X f1 (x)

...
minx∈X fp (x)
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Classical multi-objective algorithm goal: obtaining a “good”
discrete approximation of the set of non-dominated solutions
(Pareto set and front)



Bayesian optimization (BO) in a nutshell
BO: sequential design strategy based on a distribution over
functions to define an acquisition function.

Two ingredients:

I fast surrogate (or metamodel) of the objectives
I infill criterion adapted to the problem at hand

Design of experiments

Black
Box

Metamodels training

Infill criterion optimization

Budget

Result



Gaussian process (GP) regression

GPs make popular surrogates, in particular with their uncertainty
quantification and interpolation capabilities.
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DiceKriging is used for GP regression here.



A word on MO acquisition functions

Some are based on a notion of improvement:
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Other on the notion of variance (or entropy) of a given quantity.



Example 1: bi-objective optimization
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Example 1: bi-objective optimization (cont’d)
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Some postprocessings are available as well:



Example 1: bi-objective optimization (cont’d)
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Test case: rear shock absorber (d = 47)
Objectives: mass, axial and lateral impacts on empty or charged
vehicle
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Many-objective challenges
Taking more objectives is possible, e.g., with 3:

But, as p grows:

I visualization and selection is more complex,
I approximating the Pareto set/front is increasingly difficult,
I the proportion of non-dominated solutions grows quickly.



Game theoretic perspective on many-objective optimization

With a limited budget, it is more reasonable to focus on a single
good solution: the Kalai-Smorodinsky (KS) solution.

Objectives are considered as players, aiming to get equal benefit
ratios from a disagrement point (e.g., the Nadir point).
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Calibration of an agent-based behavioral model
13-variable model of behavior of occupants in a building.

The 9 objectives are target values based on record or surveys.

Preferences can be incorporated by defining a custom disagrement
point.

Result with 100 initial designs and 100 sequentially added ones:
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Thanks

GPareto efficiently solves expensive multi-objective optimization
problems. Additional post-processing routines are available for
further uncertainty quantification on the Pareto front and set.

Complementarily, GPGame tackles many-objective optimization with
a game theoretic point of view, and can find discrete Nash equilibria.

Both packages are available on CRAN, facilitating everything in this
reproducible Rmarkdown talk.

I A Journal of Statistical Software paper is available for
GPareto.

https://www.jstatsoft.org/article/view/v089i08

