The GPareto and GPGame packages for multi and many objective Bayesian optimization UseR! 2019, Toulouse

Mickael Binois (Inria Sophia) and Victor Picheny (Prowler.io) mickael.binois@inria.fr

12/07/2019

Bayesian Optimization context

Black-box model with multiple outputs:

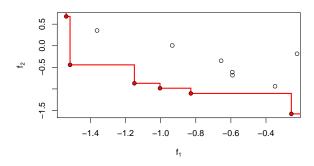
$$f: x \in \mathbf{X} \subset \mathbf{R}^d \mapsto \mathbf{R}^p$$

Working hypotheses: f is expensive to compute, with complex outputs:

non-convex

- no derivatives available
- possible observation noise

X is typically a box of dimension $2 \le d \le 100$

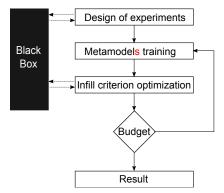

Examples:

- engineering design applications
- hyperparameter tuning in Machine Learning

Multi-objective optimization

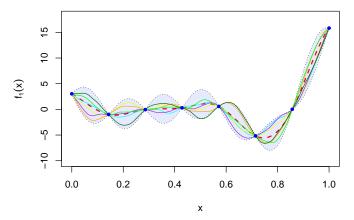
$$\mathsf{MOP}:\begin{cases} \mathsf{min}_{x\in\mathbf{X}} & f_1(x) \\ \vdots \\ \mathsf{min}_{x\in\mathbf{X}} & f_p(x) \end{cases}$$

Pareto front (ensemble of non-dominated solutions)


Classical multi-objective algorithm goal: obtaining a "good" discrete approximation of the set of non-dominated solutions (Pareto set and front)

Bayesian optimization (BO) in a nutshell

BO: sequential design strategy based on a distribution over functions to define an acquisition function.

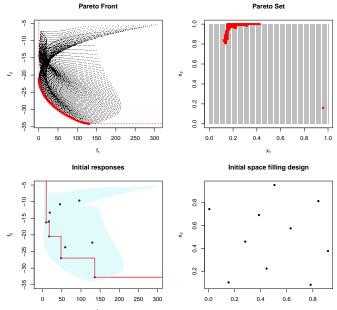

Two ingredients:

- fast surrogate (or metamodel) of the objectives
- infill criterion adapted to the problem at hand

Gaussian process (GP) regression

GPs make popular surrogates, in particular with their uncertainty quantification and interpolation capabilities.

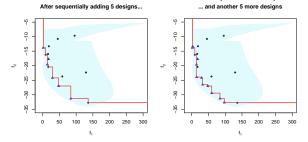
DiceKriging is used for GP regression here.

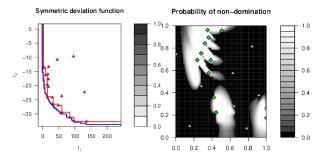

A word on MO acquisition functions

Some are based on a notion of improvement:

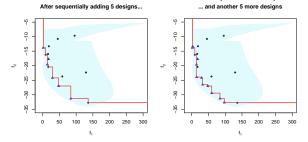
Maxmin distance Hypervolume 1.0 1.0 0.8 0.8 0.6 0.6 <u>~</u> <u>_</u> 0.4 4.0 0.2 0.2 0.0 0.0 0.0 0.2 0.6 0.8 0.2 0.4 1.0 0.0 0.4 0.6 0.8 1.0 f₁ f₁

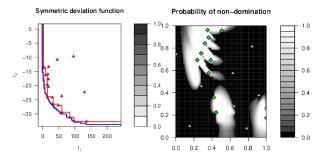
Other on the notion of variance (or entropy) of a given quantity.


Example 1: bi-objective optimization

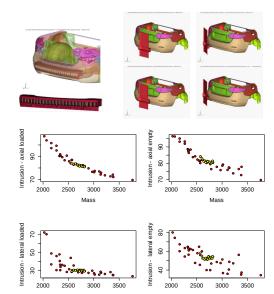

f₁

 \mathbf{X}_1

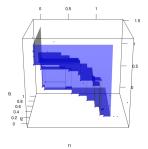

Example 1: bi-objective optimization (cont'd)


Some postprocessings are available as well:

Example 1: bi-objective optimization (cont'd)



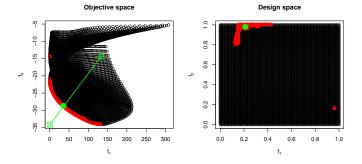
Some postprocessings are available as well:


Test case: rear shock absorber (d = 47)

Objectives: mass, axial and lateral impacts on empty or charged vehicle

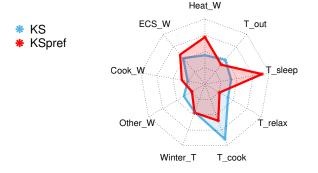
Many-objective challenges

Taking more objectives is possible, e.g., with 3:

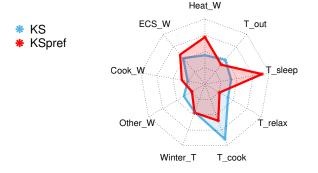

But, as *p* grows:

- visualization and selection is more complex,
- approximating the Pareto set/front is increasingly difficult,
- the proportion of non-dominated solutions grows quickly.

Game theoretic perspective on many-objective optimization


With a limited budget, it is more reasonable to focus on a single *good* solution: the Kalai-Smorodinsky (KS) solution.

Objectives are considered as players, aiming to get equal benefit ratios from a disagrement point (e.g., the Nadir point).


Calibration of an agent-based behavioral model

- 13-variable model of behavior of occupants in a building.
- The 9 objectives are target values based on record or surveys.
- Preferences can be incorporated by defining a custom disagrement point.
- Result with 100 initial designs and 100 sequentially added ones:

Calibration of an agent-based behavioral model

- 13-variable model of behavior of occupants in a building.
- The 9 objectives are target values based on record or surveys.
- Preferences can be incorporated by defining a custom disagrement point.
- Result with 100 initial designs and 100 sequentially added ones:

Thanks

GPareto efficiently solves expensive multi-objective optimization problems. Additional post-processing routines are available for further uncertainty quantification on the Pareto front and set.

Complementarily, GPGame tackles many-objective optimization with a game theoretic point of view, and can find discrete Nash equilibria.

Both packages are available on CRAN, facilitating everything in this reproducible Rmarkdown talk.

 A Journal of Statistical Software paper is available for GPareto.