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Motivation

−→ Effect of stimuli on behavior are mediated by various
transformation processes

Simple mediation model:
X independent variable
Y dependent variable
M mediator

−→ Dependent variable is influenced by the independent variable
through the mediator

ERASMUS SCHOOL OF ECONOMICS 2/25



Simple mediation model

X Y

M

ba

c

−→ X affects Y indirectly through M

Example: Task conflict (M) mediates the relationship between value
diversity (X ) and team commitment (Y )
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Simple mediation model

Consider the following three regression models:

M = i1 + aX + e1
Y = i2 + c ′X + e2
Y = i3 + bM + cX + e3

−→ Indirect effect ab
−→ Direct effect c
−→ Total effect c ′ = ab + c
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Simple mediation model

Estimate the following two regression models:

M = iM + aX + eM

Y = iY + bM + cX + eY

−→ Indirect effect ab
−→ Direct effect c
−→ Total effect c ′ = ab + c
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Estimation of the mediation model

−→ Typically, a series of ordinary least squares (OLS) regressions is
used to estimate the mediation model

−→ Sampling distribution of the estimator âb of the indirect effect
is asymmetric

−→ Bootstrap is typically used to construct confidence intervals
(Preacher and Hayes, 2004, 2008)
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Illustration: Estimation of the mediation model
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â

ĉ
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Standard bootstrap test

−→ OLS and the bootstrap are easily distorted by deviations from
the usual normality assumptions in regression

Heavily tailed errors
Outliers
. . .

−→ Robust alternatives are needed to ensure reliable results in
empirical research
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MM-estimator of regression

−→ Replace least squares loss with a more robust loss function

−→ Can be seen as weighted least squares estimator (WLS) with
outlyingness weights derived from data

−→ See Yohai (1987) and Salibian-Barrera and Yohai (2006)
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Linear regression: Loss function and weights

Loss Weight
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Fast and robust boostrap

−→ Not necessary to do exhaustive search for optimal weights on
each bootstrap sample

−→ On each bootstrap sample:
1 Compute WLS estimate with outlyingness weights obtained

from original sample
2 Apply linear correction of estimates to account for additional

uncertainty from obtaining the weights

−→ See Salibian-Barrera and Zamar (2002) and Salibian-Barrera
and Van Aelst (2008)
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Robust mediation analysis

1 Estimate the mediation model via series of MM-regressions
2 Compute asymmetric confidence intervals for the indirect effect

via the fast and robust bootstrap

−→ Research Report: Alfons et al. (2018)
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Software

−→ R package robmed available on CRAN:
https://CRAN.R-project.org/package=robmed

−→ R extension for SPSS under development:
https://github.com/aalfons/ROBMED-SPSS
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Illustrative hypotheses and data

−→ Replicate known theory from organizational research on new
data from a business strategy game played by students

Illustrative hypothesis Task conflict (M) mediates the relationship between
value diversity (X ) and team commitment (Y )

R> library("robmed")
R> data("BSG2014")
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Empirical example

Value
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Empirical example

R> # seed of random number generator
R> seed <- 20150601
R>
R> # perform standard method and proposed robust method
R> set.seed(seed, sample.kind = "Rounding") # mimic R 3.5.2
R> standard <- test_mediation(BSG2014,
+ x = "ValueDiversity",
+ y = "TeamCommitment",
+ m = "TaskConflict",
+ robust = FALSE)
R> set.seed(seed, sample.kind = "Rounding") # mimic R 3.5.2
R> robust <- test_mediation(BSG2014,
+ x = "ValueDiversity",
+ y = "TeamCommitment",
+ m = "TaskConflict")
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Empirical example: Standard method (I)

R> summary(standard)
Bootstrap test for indirect effect via regression

x = ValueDiversity
y = TeamCommitment
m = TaskConflict

Sample size: 89
---
Outcome variable: TaskConflict

Coefficients:
Data Boot Std. Error z value Pr(>|z|)

(Intercept) 1.5007 1.4940 0.2265 6.596 4.23e-11 ***
ValueDiversity 0.1552 0.1589 0.1266 1.255 0.209

Residual standard error: 0.3908 on 87 degrees of freedom
Multiple R-squared: 0.01857,Adjusted R-squared: 0.007289
F-statistic: 1.646 on 1 and 87 DF, p-value: 0.2029
---

ERASMUS SCHOOL OF ECONOMICS 16/25



Empirical example: Standard method (II)

Outcome variable: TeamCommitment

Coefficients:
Data Boot Std. Error z value Pr(>|z|)

(Intercept) 4.49846 4.50162 0.32963 13.657 <2e-16 ***
TaskConflict -0.36412 -0.37036 0.16021 -2.312 0.0208 *
ValueDiversity -0.02088 -0.01636 0.14524 -0.113 0.9103

Residual standard error: 0.4296 on 86 degrees of freedom
Multiple R-squared: 0.1031,Adjusted R-squared: 0.08227
F-statistic: 4.944 on 2 and 86 DF, p-value: 0.009279
---
Total effect of x on y:

Data Boot Std. Error z value Pr(>|z|)
ValueDiversity -0.07738 -0.07609 0.15855 -0.48 0.631

Direct effect of x on y:
Data Boot Std. Error z value Pr(>|z|)

ValueDiversity -0.02088 -0.01636 0.14524 -0.113 0.91
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Empirical example: Standard method (III)

Indirect effect of x on y:
Data Boot Lower Upper

TaskConflict -0.0565 -0.05973 -0.2083 0.0251
---
Level of confidence: 95 %

Number of bootstrap replicates: 5000
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Function p_value() allows to extract the smallest α for which the
(1− α) · 100% confidence interval does not contain 0:

R> p_value(standard)
[1] 0.1584
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Empirical example: ROBMED (I)

R> summary(robust)
Robust bootstrap test for indirect effect via regression

x = ValueDiversity
y = TeamCommitment
m = TaskConflict

Sample size: 89
---
Outcome variable: TaskConflict

Coefficients:
Data Boot Std. Error z value Pr(>|z|)

(Intercept) 1.1182 1.1162 0.1778 6.279 3.42e-10 ***
ValueDiversity 0.3197 0.3211 0.1071 2.998 0.00272 **

Robust residual standard error: 0.3033 on 87 degrees of freedom
Robust R-squared: 0.1181,Adjusted robust R-squared: 0.108
Robust F-statistic: 9.113 on 1 and Inf DF, p-value: 0.002539
---
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Empirical example: ROBMED (II)

Outcome variable: TeamCommitment

Coefficients:
Data Boot Std. Error z value Pr(>|z|)

(Intercept) 4.33385 4.34430 0.34088 12.744 <2e-16 ***
TaskConflict -0.33659 -0.34353 0.17761 -1.934 0.0531 .
ValueDiversity 0.06523 0.06507 0.18594 0.350 0.7264

Robust residual standard error: 0.3899 on 86 degrees of freedom
Robust R-squared: 0.08994,Adjusted robust R-squared: 0.06878
Robust F-statistic: 1.497 on 2 and Inf DF, p-value: 0.2239
---
Total effect of x on y:

Data Boot Std. Error z value Pr(>|z|)
ValueDiversity -0.04239 -0.04501 0.18671 -0.241 0.81

Direct effect of x on y:
Data Boot Std. Error z value Pr(>|z|)

ValueDiversity 0.06523 0.06507 0.18594 0.35 0.726
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Empirical example: ROBMED (III)

Indirect effect of x on y:
Data Boot Lower Upper

TaskConflict -0.1076 -0.1101 -0.294 -0.01042
---
Level of confidence: 95 %

Number of bootstrap replicates: 5000
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Function p_value() allows to extract the smallest α for which the
(1− α) · 100% confidence interval does not contain 0:

R> p_value(robust)
[1] 0.0271
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Empirical example

R> plot_mediation(list(Standard = standard, ROBMED = robust),
+ method = "density")
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R package robmed: Further details

−→ The usual coef(), confint(), plot(), print() and
summary() methods

−→ Other techniques: based on winsorization (Zu and Yuan, 2010)
or median regression (Yuan and MacKinnon, 2014)

−→ Multiple mediators or additional covariates
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Conclusions and discussion

Conclusions
−→ Standard bootstrap test for mediation analysis is easily

distorted by deviations from the usual normality assumptions
−→ Fast and robust bootstrap allows for much more reliable

empirical results than other methods
−→ R package robmed available on CRAN

Future work
−→ Binary/nominal/ordinal dependent variable or mediators
−→ Mediated moderation, moderated mediation, . . .
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Empirical example: Further analysis
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Technical details: MM-estimator

−→ MM-estimator (Yohai, 1987; Salibian-Barrera and Yohai, 2006)
minimizes a bounded function ρ(r) of the scaled residuals:

β̂ = argmin
β

n∑
i=1

ρ

( ri (β)
σ̂

)
,

where σ̂ is a robust scale estimate of the residuals from a highly
robust initial regression estimator

−→ Loss function ρ can be tuned for high efficiency
−→ High robustness is inherited from initial residual scale σ̂

ERASMUS SCHOOL OF ECONOMICS 25/25



Technical details: MM-estimator

The MM-estimate can be written as

β̂ =
( n∑

i=1
wixixT

i

)−1 n∑
i=1

wixiyi

with
wi = ρ′(ri(β)/σ̂)

ri(β)/σ̂ , i = 1, ..., n

−→ Weighted least squares estimator (WLS) with outlyingness
weights derived from data
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