
Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

xstatR: an Environment for Running
R and XLISP-STAT in Docker Containers

UseR! 2019

E. James Harner and Jun Tan

West Virginia University
Rc2ai

July, 2019

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

Outline

Introduction

xstatR Architecture

Data mapping

Main functions

xstatR

RXLisp

Discussion

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

Why XLisp-Stat?

GitHub repo for this talk:
https://github.com/jharner/UseR2019xstatR

XLisp-Stat is little used since R has become the dominant
open-source statistical computing platform, but it has many
interesting features. It is now easy to use a Dockerized
environment containing both R and XLisp-Stat. The talk presents
two approaches for integrating R and XLisp-Stat.

XLisp-Stat has the following desirable features:

• a rich environment for dynamic graphics;

• a simple api for building graphical interfaces;

• a flexible, intuitive object-oriented system

• strong support for symbolic AI programming

and much more!

https://github.com/jharner/UseR2019xstatR
https://github.com/jharner/UseR2019xstatR

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

Integrating R and XLisp-Stat

Two dockerized environment have been created for integrating R
and XLisp-Stat.

xstatR for embedding R into XLisp-Stat using R as a
dynamic library

RXLisp for embedding XLisp-Stat into R using XLisp-Stat as
a dynamic library

xstatR was originally presented by Jim Harner with programming
support by Jun Tan in the 2009 Directions in Statistical Computing
(DSC) Workshop held in Copenhagen.

RXLisp was developed by Duncan Temple Lang in 2002.

Both projects laid dormant until Docker made it possible to use
the best features of R and XLisp-Stat.

https://github.com/jharner/xstatR
https://github.com/jharner/RXLisp
https://www.r-project.org/DSC-2009/
https://www.r-project.org/DSC-2009/
http://www.omegahat.net/RXLisp/index.html

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

xstatR: Linking via the R dynamic library

xstatR GitHub repo: https://github.com/jharner/xstatR

xstatR is designed for the user who wants the full XLisp-Stat
environment with extensions for advanced dynamic graphics and a
full R environment both accessible by a command-line interface
with X11 support.

• Allows for a natural interface for software written in C

• Calls R directly

• Does not depend on other software, except for R

• Needs no setup or configuration

• Compile R with the –enable-R-shlib option

• Recompile xlispstat after upgrading R (if necessary)

https://github.com/jharner/xstatR

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

RXLisp: Linking via the XLisp-Stat dynamic library

RXLisp GitHub repo: https://github.com/jharner/RXLisp

RXLisp is designed for an R user who wants access to the dynamic
graphics of XLisp-Stat using the syntax of R.

• Loads XLisp into R as an R package

• Implements a subset of XLisp-Stat, e.g., callbacks not
currently supported

• Allows an R interface to XLisp-Stat (with an optional XLisp
interface)

• Requires little knowledge of XLisp-Stat except the functions of
interest

https://github.com/jharner/RXLisp

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

What is Docker?

Docker containers provides a platform for running xstatR and
RXLisp.

The two principal Docker entities are:

Image: an executable package that includes everything
needed to run an application

Container: a runtime instance of an image

The image contains the code, configuration files, environmental
variables, libraries, and the runtime. A container is an image with
state, i.e., a user process.

The xstatR and RXLisp images provide complete, immutable
solutions for embedding R in XLisp-Stat or embedding XLisp-Stat
in R, respectively.

https://www.docker.com/what-docker#/container-platform

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

A Layered Structure

• C/R Interface

• Low level Lisp/R API

• High level Lisp/R API

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

C/R Interface

• The C/R interface is a thin wrapper of the embedded R API.

• The C/R interface avoids name conflicts between xlispstat and
R

• R functions are mapped to C-based R interface
macros/functions in xlispstat

• The C/R layer is invisible to users of xlispstat

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

Low Level Lisp/R API

• Developed in C for communicating with the external C
interface in R

• Provides basic functions for allowing the Lisp user to access R

• Requires the user to take care of details, e.g., data
synchronization between Lisp and R

• Designed for developers and advanced users

• Used as a platform for xlispstat packages, e.g., xstatR, that
require the flexible use of R

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

High Level Lisp/R API

• Developed in Lisp

• Communicates with the low-level C macros/functions

• Provides convenient functions based on the embedded R
environment

• Hides the embedded R environment from the user

• Is customizable and extendible, e.g., the user can customize
the mapping between an R object and a Lisp object

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

Data type mapping

• Data type mapping needs to be dealt with in
bridging/interface software

• One-to-one mapping is the ideal situation

• Due to the rich data structures in Lisp and R and their
flexibility, no such mapping exists

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

A possible solution

• Convert simple data types, e.g., vectors of scalers.

• Returns a reference to R objects rather than converting
complex data types

• Depends on the user to retrieve information from the R object
references

• Used by R interface packages such as JRI and RServe

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

Problems of this method

• R objects need to be locked to avoid garbage collection

• User is responsible for releasing R objects

• Proper access methods to the object references are needed

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

Our strategy

• Use a generic structure to represent R objects

• Copy the data into this structure, ignoring unrecognized
components

• Unlock the R object by default after all information is copied

• Assign R objects to variable names to retain them in memory,
if persistence is needed

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

The generic structure representing R objects

• A list of length one or three

• The first element is the data part

• The second and third elements, for R objects with attributes,
are the attribute names and the attribute values

• Attribute name list is a list of strings

• Attribute value list provides the corresponding values of the
named attributes

• Data part is either an array of scalars/strings, etc., or
(recursively) a list of generic structures

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

Current Implementation

• Many complicated structures are (currently) copied without
special handling, e.g., lm objects.

• This structure is not convenient for direct use.

• The generic structure is a good foundation for building highly
flexible conversions to meet users’ needs, e.g., as has been
implemented for data frames.

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

Low-level C Functions

• (callR "R statement")

Parse and evaluate an R statement. The evaluation result will
be copied into a generic structure and returned to the user.

• (saveToR "rName", lispObj)

Save the value of lispObj into the embedded R environment
(the value has to be encoded into the generic structure).

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

xstatR Low-level Examples

(setf y-list (callR "rnorm(50)"))

(setf y (first y-list))

(histogram y)

(saveToR "y" y-list)

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

High-level functions: converting R objects

• A prototype, Rengine-proto, was built to ease the process of
calling R.

• Rengine-proto directly supports the xstatR package, but can
be used by any xlispstat package.

• The user can determine how to convert an R object based on
its class name, dimension, etc.

• Rengine-proto currently includes loading data from R,
saving an xstatR dataset to an R data frame, etc.

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

List of major methods

• (send R :call "statement" &key asis)

Parse and evaluate a R statement.
asis is a boolean value indicating whether to bypass the
conversion process or not

• (send R :save "rName" lispObj

&key attr attrNames)

Save a lisp object to R. Attributes and names can be attached

• (send R :save-dataset "rName" lispObj

&key cols rows)

Save a dataset or part of a dataset as data frame in R

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

xstatR High-level Examples

(setf iris (send R :data "iris"))

(send R :save-dataset "iris.data" iris

:cols ’(SEPAL.LENGTH SEPAL.WIDTH)

:rows (iseq 1 10))

(send R :call "ls()")

(setf x (send R :call "iris.data"))

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

Demos

XLisp-Stat and xstatR Demos:
https://stat.wvu.edu/ jharner/useR2019/xstatRvideos.html

https://stat.wvu.edu/~jharner/useR2019/xstatRvideos.html
https://stat.wvu.edu/~jharner/useR2019/xstatRvideos.html

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

The xstatR package

• A lisp package used for dynamic graphics, data modeling, and
multivariate analysis

• Dataset objects are defined in terms of observation objects

• Virtual datasets are constructed to encapsulate derived
variables from model or other statistical objects

• Observations are objects viewable in different graphs

• Point state, color, and symbol are properties of the
observation

• Changes in an observation value or property is immediately
updated in its linked views

• R acts as a computational engine using the Lisp/R bridge

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

Partial Overview

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

Linked plots

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

Modeling Tree

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

More about virtual datasets for models

• Models generate derived variables from the original model
variables.

• The newly generated data often need to be combined with the
original dataset, e.g., to plot residuals against a predictor.

• SAS/JMP add (optionally) derived variables from models to
the same dataset and the user soon loses track of which
derived variables go with which model.

• R generates (optionally) named model and summary objects
and the user soon loses track of the underlying
models/summaries.

• Virtual datasets combined with tree-based model
visualizations provide a solution.

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

More about virtual datasets for models (cont.)

A virtual dataset is able to bind new data with the original dataset
without changing it. For each model, the user will only see the new
data generated by the model and the original dataset.

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

RXLisp

The RXLisp package provides an interface for calling XLisp-Stat
functions from within R.

RXLisp has relatively few functions. The most important are:

.XLispInit which initializes the XLisp-Stat engine so that it can
be used to process calls to XLisp functions;

.XLisp which provides an interface to calling XLisp-Stat
functions from R, converting the arguments from R
values to XLisp-Stat objects and converting the
resulting value back to an R object;

[[.XLispReference which provide a way to invoke methods and
access slots in XLisp objects from within R.

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

RXLisp Examples

> library(RXLisp)

> .XLispInit()

> .XLisp("+", 1, 2, 3)

> .XLisp("mean", c(1, 2, 3))

Generate a sample of 10 values from a Poisson

distribution with mean 3.5.

> .XLisp("poisson-rand", as.integer(10), 3.5)

Reference objects

> h <- .XLisp("histogram", rnorm(100))

> .Xlisp("send", h, ":close")

or for a more R-like way

> h[["title"]]

> h$close()

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

RXLisp Graphics Examples

> library(RXLisp)

> .XLispInit()

Dynamic graphics

> myData <- list(rnorm(20), rnorm(20), rnorm(20))

> .XLisp("scatterplot-matrix", myData,

":variable-labels", list("a", "b", "c"))

or for a more R-like way

> .XLisp("scatterplot-matrix", myData,

"variable-labels"= list("a", "b", "c"))

> .XLisp("spin-plot", myData)

Introduction xstatR Architecture Data mapping Main functions xstatR RXLisp Discussion

Currently working on...

• Virtual datasets combine the “variables” in a dataset with the
“derived variables” from a model object;

• The dataset browser shows the virtual dataset by clicking on
the statistical object view, e.g., a model view;

• Virtual datasets support linking, e.g., for model diagnostic
plots;

• Virtual model datasets combined with a model tree recursively
allow model comparisons;

• The RXLisp implementation.

	Introduction
	xstatR Architecture
	Data mapping
	Main functions
	xstatR
	RXLisp
	Discussion

