
An R Interface to Hail

Michael Lawrence (Genentech)

May 31, 2019

I A platform and language for distributed genomics on Apache
Spark

I Provides:
I General tabular data manipulation,
I Specialized, scalable data structures stored in Parquet, and
I Efficient implementation of domain-specific algorithms in C++

I Designed to be interfaced through high-level languages
I Python interface comes out of the box

Bioconductor is an R platform for integrative genomics

I Started 2002
I Led by Martin Morgan
I Core infrastructure maintained by about 8

people, based in Roswell Park CRC in
Buffalo, NY

I >2000 R software packages that form a
unified platform

I Well-used and respected.
I 53k unique IP downloads / month.
I 21,700 PubMedCentral citations.

Bioconductor is an integrated platform

Hail and Bioconductor share their central data type
A SummarizedExperiment (Bioc) or MatrixTable (Hail)

The hailr package

sparklyr SparkR? Other?

SparkDriver

SparkObject

HailDataFrame, HailExperiment, HailPromise

Base

hailr pushes compute to Hail via lazy evaluation

Eager evaluation

> head(sort(x))

sort(x)

Sorted full
datasetHead

Lazy evaluation

sort(x)
...

head(sort(x))

Sorted head

R already uses lazy evaluation

plot(1:10)

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

Index

1:
10

R function call arguments are promises

fun <- function(arg) substitute(arg)
fun(1:10)

1:10

Lazy evaluation delays work until absolutely necessary

fun <- function(arg) {
z <- arg
substitute(z)

}
fun(1:10)

[1] 1 2 3 4 5 6 7 8 9 10

It often pays to be lazy

I Provenance capture
I Interactive graphics

pipelines, streaming
I Responsiveness

through
asynchronicity

I Optimization
I Compact

representations
I Querying databases

and files
I Distributed

computing

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

Index

1:
10

It often pays to be lazy

I Provenance capture
I Interactive graphics

pipelines, streaming
I Responsiveness

through
asynchronicity

I Optimization
I Compact

representations
I Querying databases

and files
I Distributed

computing

It often pays to be lazy

I Provenance capture
I Interactive graphics

pipelines, streaming
I Responsiveness

through
asynchronicity

I Optimization
I Compact

representations
I Querying databases

and files
I Distributed

computing

It often pays to be lazy

I Provenance capture
I Interactive graphics

pipelines, streaming
I Responsiveness

through
asynchronicity

I Optimization
I Compact

representations
I Querying databases

and files
I Distributed

computing

It often pays to be lazy

I Provenance capture
I Interactive graphics

pipelines, streaming
I Responsiveness

through
asynchronicity

I Optimization
I Compact

representations
I Querying databases

and files
I Distributed

computing

New in R 3.5:
system.time(1:1e12)

user system elapsed
0 0 0

CompressedList in S4Vectors:

splitAsList(1:8, rep(1:4, c(3, 2, 1, 2))

3 5 6 8

It often pays to be lazy

I Provenance capture
I Interactive graphics

pipelines, streaming
I Responsiveness

through
asynchronicity

I Optimization
I Compact

representations
I Querying databases

and files
I Distributed

computing

It often pays to be lazy

I Provenance capture
I Interactive graphics

pipelines, streaming
I Responsiveness

through
asynchronicity

I Optimization
I Compact

representations
I Querying databases

and files
I Distributed

computing

Deferred data structures allow for eager evaluation

> head(sort(x))

For some promise “x”:

Deferred data structures allow for eager evaluation

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

Deferred data structures allow for eager evaluation

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort

get

limit

x

Deferred data structures allow for eager evaluation

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort

get

limit

x

Serialization

(limit (sort (get x)))

Deferred data structures allow for eager evaluation

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort

get

limit

x

Serialization

(limit (sort (get x)))

Zhang, Herodotou, Yang
(2009) RIOT: I/O-Efficient
Numerical Computing
without SQL. https://
arxiv.org/abs/0909.1766

https://arxiv.org/abs/0909.1766
https://arxiv.org/abs/0909.1766

Programmability is fundamental

> df %>% arrange(x) %>% head()
DSLs should rest on programmatic API:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

DSL implementation

Base

Bioconductor containers rely on base API to be generic

I Bioconductor containers
assume elements implement
key functions from the base
API

I DataFrame allows
anything "vector-like" to
be a column

I SummarizedExperiment
allows anything
"matrix-like" to hold
assay values

I Since our promises
implement the base API,
they just work

I But we still want to map
DataFrame operations to
Hail Table operations

hailr is a hierarchical extension of Bioconductor

DataFrame

HailDataFrame
(Hail)
Table

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

hailr is a hierarchical extension of Bioconductor

DataFrame

HailDataFrame
(Hail)
Table

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e

H
ai

lP
ro

m
is

e
SummarizedExperiment

HailSummarizedExperiment
(Hail)

MatrixTable HailDataFrame

HailArray
(DelayedArray)

H
ailD

ataFram
e

We can load data into Hail

Directly from a text file:
library(hailr)
data_dir <- system.file("extdata", package="hailr")
tsv1 <- file.path(data_dir, "kt_example1.tsv")
df <- readHailDataFrameFromText(tsv1, header=TRUE)

Copying from an R data.frame:
df <- copy(read.table(tsv1, header=TRUE), hail())

. . . and get it back out

df

HailDataFrame with 4 rows and 8 columns
ID HT SEX X Z

<Int32Promise> <Int32Promise> <StringPromise> <Int32Promise> <Int32Promise>
1 1 65 M 5 4
2 2 72 M 6 3
3 3 70 F 7 3
4 4 60 F 8 2

C1 C2 C3
<Int32Promise> <Int32Promise> <Int32Promise>

1 2 50 5
2 2 61 1
3 10 81 -5
4 11 90 -10

df$ID

[1] 1 2 3 4

A glimpse into the compiler

as.character(df$ID@expr)

[1] "(GetField ID (Ref row))"

Abstractions enable mixed evaluation

DataFrame
H

ai
lP

ro
m

is
e

H
ai

lP
ro

m
is

e

S
ol

rP
ro

m
is

e

H
ai

lP
ro

m
is

e

R
 V

ec
to

r

S
ol

rP
ro

m
is

e

ALTREP

Abstractions enable mixed evaluation

DataFrame
H

ai
lP

ro
m

is
e

H
ai

lP
ro

m
is

e

S
ol

rP
ro

m
is

e

H
ai

lP
ro

m
is

e

R
 V

ec
to

r

S
ol

rP
ro

m
is

e

ALTREP

Looking forward: generalized, integrated compute
Intermediate algebra, optimization with backend-informed cost model

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort head

x

Looking forward: generalized, integrated compute
Intermediate algebra, optimization with backend-informed cost model

> sort(x)[1:5]

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort head

x

[()

[,Promise()

Looking forward: generalized, integrated compute
Intermediate algebra, optimization with backend-informed cost model

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort head

x

Optimization

Partial
sort

Looking forward: generalized, integrated compute
Intermediate algebra, optimization with backend-informed cost model

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort head

x

Optimization

Partial
sort

Looking forward: generalized, integrated compute
Intermediate algebra, optimization with backend-informed cost model

> head(sort(x))

For some promise “x”:

sort() head()

Dispatch (S3/S4)

sort,Promise() head,Promise()

sort head

x

Optimization

Partial
sort

Translation

Serialization

solr hail SQL

Acknowledgements

I Javier Luraschi and Kevin Kuo (responsive sparklyr support)
I Samuel Macêdo (recent contributions)
I Cotton Seed (leader of Hail project)

