Visualizing multivariate linear models in R

Michael Friendly ${ }^{1}$ Matthew Sigal ${ }^{2}$
${ }^{1}$ York University, Toronto
${ }^{2}$ Simon Fraser University
useR 2019
Toulouse, July 9-12, 2019

Outline

(1) Background

- Overview
- Visual overview
- Data ellipses
- The Multivariate Linear Model
(2) Hypothesis Error (HE) plots
- Motivating example
- Visualizing H and E variation
- MANOVA designs
(3) Reduced-rank displays
- Low-D displays of high-D data
- Canonical discriminant HE plots

4. Recent extensions

- Robust MLMs
- Influence diagnostics for MLMs

- Ridge regression plots
(5) Conclusions

Slides: http://datavis.ca/papers/useR2019-2x2.pdf

Overview: Research topics

Graphical methods for univariate response models well-developed. What about MLMs?

- This talk outlines research on graphical methods for multivariate linear models (MLMs)- extending visualization for multiple regression, ANOVA, and ANCOVA designs to those with several response variables.
- The topics addressed include:
- Visualizing multivariate tests with Hypothesis-Error (HE) plots in 2D and 3D
- Low-D views: Generalized canonical discriminant analysis \rightarrow canonical HE plots
- Visualization methods for tests of equality of covariance matrices in MANOVA designs
- Extending these methods to robust MLMs
- Developing multivariate analogs of influence measures and diagnostic plots for MLMs.

Overview: R packages

The following R packages implement these methods:

- car package: provides the infrastructure for hypothesis tests (Anova ()) and tests of linear hypotheses (linearHypothesis ()) in MLMs, including repeated measures designs.
- heplots package: implements the HE plot framework in 2D (heplot ()), 3D (heplot3d()), and scatterplot matrix form (pairs .mlm()). Also provides:
- covellipses () for covariance ellipses, with optional robust estimation
- boxM () and related methods for testing / visualizing equality of covariance matrices in MANOVA
- Tutorial vignettes and many data set examples of use
- candisc package: generalized canonical discriminant analysis for an MLM, and associated plot methods.
- mvinfluence package: Multivariate extensions of leverage and influence (Cook's D) and influencePlot.mlm() in various forms.
- genridge package: Generalized 2D \& 3D ridge regression plots.

Visual overview: Multivariate data, $\boldsymbol{Y}_{n \times p}$

What we know how to do well (almost)

- 2 vars: Scatterplot

Visual overview: Multivariate data, $\boldsymbol{Y}_{n \times p}$

What we know how to do well (almost)

- 2 vars: Scatterplot + annotations (data ellipses, smoothers)
- p vars: Scatterplot matrix (all pairs)

Visual overview: Multivariate data, $\boldsymbol{Y}_{n \times p}$

What we know how to do well (almost)

- 2 vars: Scatterplot + annotations (data ellipses, smoothers)
- p vars: Scatterplot matrix (all pairs)
- p vars: Reduced-rank display- show max. total variation \mapsto biplot

Visual overview: Multivariate data, $\boldsymbol{Y}_{n \times p}$

What we know how to do well (almost)

- 2 vars: Scatterplot + annotations (data ellipses, smoothers)
- p vars: Scatterplot matrix (all pairs)
- p vars: Reduced-rank display- show max. total variation \mapsto biplot

Visual overview: Multivariate linear model,

 $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{B}+\boldsymbol{U}$
What is new here?

- 2 vars: HE plot— data ellipses of \boldsymbol{H} (fitted) and \boldsymbol{E} (residual) SSP matrices
- p vars: HE plot matrix (all pairs)

Visual overview: Multivariate linear model,

 $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{B}+\boldsymbol{U}$
What is new here?

- 2 vars: HE plot— data ellipses of \boldsymbol{H} (fitted) and \boldsymbol{E} (residual) SSP matrices
- p vars: HE plot matrix (all pairs)
- p vars: Reduced-rank display— show max. H wrt. E \mapsto Canonical HE plot

Visual overview: Multivariate linear model,

 $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{B}+\boldsymbol{U}$
What is new here?

- 2 vars: HE plot— data ellipses of \boldsymbol{H} (fitted) and \boldsymbol{E} (residual) SSP matrices
- p vars: HE plot matrix (all pairs)
- p vars: Reduced-rank display— show max. H wrt. $\boldsymbol{E} \mapsto$ Canonical HE plot

Visual overview: Recent extensions

Extending univariate methods to MLMs:

- Robust estimation for MLMs (heplots)
- Influence measures and diagnostic plots for MLMs (mvinfluence)

Visual overview: Recent extensions

Extending univariate methods to MLMs:

- Robust estimation for MLMs (heplots)
- Influence measures and diagnostic plots for MLMs (mvinfluence)
- Visualizing canonical correlation analysis (candisc)

Visual overview: Recent extensions

Extending univariate methods to MLMs:

- Robust estimation for MLMs (heplots)
- Influence measures and diagnostic plots for MLMs (mvinfluence)
- Visualizing canonical correlation analysis (candisc)

Data ellipsoids: Visually sufficient summaries

- For any p-variable, multivariate normal $\boldsymbol{y} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, the mean vector $\overline{\boldsymbol{y}}$ and sample covariance \boldsymbol{S} are sufficient statistics
- Geometrically, contours of constant density are ellipsoids centered at $\boldsymbol{\mu}$ with size and shape determined by Σ
- \mapsto the data (concentration) ellipsoid, $\mathcal{E}(\overline{\boldsymbol{y}}, \boldsymbol{S})$ is a sufficient visual summary
- Easily robustified by using robust estimators of location and scatter

Data Ellipses: Galton's data

Galton's data on Parent \& Child height

Data Ellipses: Galton's data

Data ellipse: Shows means, std. devs, regression lines, correlation

Data Ellipses: Galton's data

Radii: $c^{2}=\chi_{P}^{2}(1-\alpha)-40 \%, 68 \%$ and 95% data ellipses

The Data Ellipse: Details

- Visual summary for bivariate relations

- Shows: means, standard deviations, correlation, regression line(s)
- Defined: set of points whose squared Mahalanobis distance $\leq c^{2}$,

$$
D^{2}(\boldsymbol{y}) \equiv(\boldsymbol{y}-\overline{\boldsymbol{y}})^{\top} \boldsymbol{S}^{-1}(\boldsymbol{y}-\overline{\boldsymbol{y}}) \leq c^{2}
$$

$\mathbf{S}=$ sample covariance matrix

- Radius: when \boldsymbol{y} is \approx bivariate normal, $D^{2}(\boldsymbol{y})$ has a large-sample χ_{2}^{2} distribution with 2 degrees of freedom.
- $c^{2}=\chi_{2}^{2}(0.40) \approx 1: 1$ std. dev univariate ellipse-1D shadows: $\bar{y} \pm 1 s$
- $c^{2}=\chi_{2}^{2}(0.68)=2.28: 1$ std. dev bivariate ellipse
- $c^{2}=\chi_{2}^{2}(0.95) \approx 6: 95 \%$ data ellipse, 1D shadows: Scheffé intervals
- Construction: Transform the unit circle, $\mathcal{U}=(\sin \theta, \cos \theta)$,

$$
\mathcal{E}_{c}=\overline{\boldsymbol{y}}+c \boldsymbol{S}^{1 / 2} \mathcal{U}
$$

$\boldsymbol{S}^{1 / 2}=$ any "square root" of \boldsymbol{S} (e.g., Cholesky)

- p variables: Extends naturally to p-dimensional ellipsoids

The univariate linear model

- Model: $\boldsymbol{y}_{n \times 1}=\boldsymbol{X}_{n \times q} \boldsymbol{\beta}_{q \times 1}+\boldsymbol{\epsilon}_{n \times 1}$, with $\boldsymbol{\epsilon} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}_{n}\right)$
- LS estimates: $\hat{\beta}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$
- General Linear Test: $H_{0}: \boldsymbol{C}_{h \times q} \boldsymbol{\beta}_{q \times 1}=\mathbf{0}$, where $\boldsymbol{C}=$ matrix of constants; rows specify h linear combinations or contrasts of parameters.
- e.g., Test of $H_{0}: \beta_{1}=\beta_{2}=0$ in model $y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\epsilon_{i}$

$$
\boldsymbol{C} \boldsymbol{\beta}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right)=\binom{0}{0}
$$

- All \rightarrow F-test: How big is $S S_{H}$ relative to $S S_{E}$?

$$
F=\frac{S S_{H} / \mathrm{df}_{h}}{S S_{E} / \mathrm{df}_{e}}=\frac{M S_{H}}{M S_{E}} \longrightarrow\left(M S_{H}-F M S_{E}\right)=0
$$

The multivariate linear model

- Model: $\boldsymbol{Y}_{n \times p}=\boldsymbol{X}_{n \times q} \boldsymbol{B}_{q \times p}+\boldsymbol{U}$, for p responses, $\boldsymbol{Y}=\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{p}\right)$
- General Linear Test: $H_{0}: \boldsymbol{C}_{h \times q} \boldsymbol{B}_{q \times p}=\mathbf{0}_{h \times p}$
- Analogs of sums of squares, $S S_{H}$ and $S S_{E}$ are $(p \times p)$ matrices, \boldsymbol{H} and \boldsymbol{E}

$$
\begin{gathered}
\boldsymbol{H}=(\boldsymbol{C} \widehat{\boldsymbol{B}})^{\top}\left[\boldsymbol{C}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-} \boldsymbol{C}^{\top}\right]^{-1}(\boldsymbol{C} \widehat{\boldsymbol{B}}), \\
\boldsymbol{E}=\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{Y}^{\top}[\boldsymbol{I}-\boldsymbol{H}] \boldsymbol{Y} .
\end{gathered}
$$

- Analog of univariate F is

$$
\operatorname{det}(\boldsymbol{H}-\lambda \boldsymbol{E})=0,
$$

- How big is \boldsymbol{H} relative to \boldsymbol{E} ?
- Latent roots $\lambda_{1}, \lambda_{2}, \ldots \lambda_{s}$ measure the "size" of \boldsymbol{H} relative to \boldsymbol{E} in $s=\min \left(p, d f_{h}\right)$ orthogonal directions.
- Test statistics (Wilks' ^, Pillai trace criterion, Hotelling-Lawley trace criterion, Roy's maximum root) all combine info across these dimensions

Outline

(4) Background

- Overview
- Visual overview
- Data ellipses
- The Multivariate Linear Model
(2) Hypothesis Error (HE) plots
- Motivating example
- Visualizing H and E variation
- MANOVA designs
(3) Reduced-rank displays
- Low-D displays of high-D data
- Canonical discriminant HE plots

4. Recent extensions

- Robust MLMs
- Influence diagnostics for MLMs
- Ridge regression plots

(5) Conclusions

Motivating Example: Romano-British Pottery

Tubb, Parker \& Nicholson analyzed the chemical composition of 26 samples of Romano-British pottery found at four kiln sites in Britain.

- Sites: Ashley Rails, Caldicot, Isle of Thorns, Llanedryn
- Variables: aluminum (Al), iron (Fe), magnesium (Mg), calcium (Ca) and sodium (Na)
- \rightarrow One-way MANOVA design, 4 groups, 5 responses

```
R> library(heplots)
R> Pottery
\begin{tabular}{lrrrrrr} 
& Site & Al & Fe & Mg & Ca & Na \\
1 & Llanedyrn & 14.4 & 7.00 & 4.30 & 0.15 & 0.51 \\
2 & Llanedyrn & 13.8 & 7.08 & 3.43 & 0.12 & 0.17 \\
3 & Llanedyrn & 14.6 & 7.09 & 3.88 & 0.13 & 0.20
\end{tabular}
25 AshleyRails 14.8 2.74 0.67 0.03 0.05
26 AshleyRails 19.1 1.64 0.60 0.10 0.03
```


Motivating Example: Romano-British Pottery

Questions:

- Can the content of $\mathrm{Al}, \mathrm{Fe}, \mathrm{Mg}, \mathrm{Ca}$ and Na differentiate the sites?
- How to understand the contributions of chemical elements to discrimination?

Numerical answers:

```
R> pottery.mod <- lm(cbind(Al, Fe, Mg, Ca, Na) ~ Site)
R> car::Manova (pottery.mod)
Type II MANOVA Tests: Pillai test statistic
    Df test stat approx F num Df den Df Pr(>F)
Site 3 1.55 4.30 15 60 2.4e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

What have we learned?

- Can: YES! We can discriminate sites.
- But: How to understand the pattern(s) of group differences: ???

Motivating Example: Romano-British Pottery

Univariate plots are limited

- Do not show the relations of response variables to each other
- Do not show how variables contribute to multivariate tests

Motivating Example: Romano-British Pottery

Visual answer: HE plot

- Shows variation of means (H) relative to residual (\boldsymbol{E}) variation
- Size and orientation of \boldsymbol{H} wrt \boldsymbol{E} : how much and how variables contribute to discrimination
- Evidence scaling: \boldsymbol{H} is scaled so that it projects outside \boldsymbol{E} iff null hypothesis is rejected.

8
$1 \quad R>$ heplot3d(pottery.mod)

HE plots: Visualizing \boldsymbol{H} and \boldsymbol{E} variation

(a) Individual group scatter

(b) Between and Within Scatter

Ideas behind multivariate tests: (a) Data ellipses; (b) \boldsymbol{H} and \boldsymbol{E} matrices

- \boldsymbol{H} ellipse: data ellipse for fitted values, $\hat{\boldsymbol{y}}_{i j}=\overline{\boldsymbol{y}}_{j}$.
- E ellipse: data ellipse of residuals, $\hat{\boldsymbol{y}}_{i j}-\overline{\boldsymbol{y}}_{j}$.

HE plot details: \boldsymbol{H} and \boldsymbol{E} matrices

Recall the data on 5 chemical elements in samples of Romano-British pottery from 4 kiln sites:

R> summary (Manova (pottery.mod))
$\begin{array}{cc}\text { Sum of squares and products for error: } \\ \mathrm{Al} \quad \mathrm{Fe} \mathrm{Mg} & \mathrm{Ca} \mathrm{Na}\end{array}$
$\begin{array}{llllll}\text { Al } & 48.29 & 7.080 & 0.608 & 0.106 & 0.589\end{array}$
Fe $7.08 \quad 10.951 \quad 0.527-0.1550 .067$
$\begin{array}{lrrrrr}\mathrm{Mg} & 0.61 & 0.527 & 15.430 & 0.435 & 0.028 \\ \mathrm{Ca} & 0.11 & -0.155 & 0.435 & 0.051 & 0.010\end{array}$
$\begin{array}{llllll}\mathrm{Na} & 0.59 & 0.067 & 0.028 & 0.010 & 0.199\end{array}$

Sum of squares and products for hypo					
Al	175.6	-149.3	-130.8	-5.89	-5. 37
Fe	-149.3	134.2	117.7	4.82	5.33
Mg	-130.8	117.7	103.4	4.21	4.71
Ca	-5.9	4.8	4.2	0.20	0.15
Na	-5.4	5.3	4.7	0.15	0.26

- E matrix: Within-group (co)variation of residuals
- diag: SSE for each variable
- off-diag: ~ partial correlations
- H matrix: Between-group (co)variation of means
- diag: SSH for each variable
- off-diag: ~ correlations of means
- How big is \boldsymbol{H} relative to \boldsymbol{E} ?
- Ellipsoids: $\operatorname{dim}(\boldsymbol{H})=\operatorname{rank}(\boldsymbol{H})=$ $\min \left(p, d f_{h}\right)$

HE plot details: Scaling \boldsymbol{H} and \boldsymbol{E}

- The E ellipse is divided by $d f_{e}=(n-p) \rightarrow$ data ellipse of residuals
- Centered at grand means \rightarrow show factor means in same plot.
- "Effect size" scaling- $\boldsymbol{H} / d f_{e} \rightarrow$ data ellipse of fitted values.
- "Significance" scaling- H ellipse protrudes beyond E ellipse iff H_{0} can be rejected by Roy maximum root test
- $H /\left(\lambda_{\alpha} d f_{e}\right)$ where λ_{α} is critical value of Roy's statistic at level α.

- direction of \boldsymbol{H} wrt $\boldsymbol{E} \mapsto$ linear combinations that depart from H_{0}.
R> heplot(pottery.mod, size="effect")

HE plot details: Scaling H and E

- The E ellipse is divided by $d f_{e}=(n-p) \rightarrow$ data ellipse of residuals
- Centered at grand means \rightarrow show factor means in same plot.
- "Effect size" scaling- $\boldsymbol{H} / d f_{e} \rightarrow$ data ellipse of fitted values.
- "Significance" scaling- H ellipse protrudes beyond E ellipse iff H_{0} can be rejected by Roy maximum root test
- $H /\left(\lambda_{\alpha} d f_{e}\right)$ where λ_{α} is critical value of Roy's statistic at level α.

- direction of \boldsymbol{H} wrt $\boldsymbol{E} \mapsto$ linear combinations that depart from H_{0}.
R> heplot (pottery.mod, size="evidence")

HE plot details: Contrasts and linear hypotheses

- An overall effect \mapsto an \boldsymbol{H} ellipsoid of $s=\min \left(p, d f_{h}\right)$ dimensions
- Linear hypotheses, of rank h, $H_{0}: \boldsymbol{C}_{h \times q} \boldsymbol{B}_{q \times p}=\mathbf{0}_{h \times p} \mapsto$ sub-ellipsoid of dimension h

Pottery data: Contrasts

HE plot details: Contrasts and linear hypotheses

- An overall effect \mapsto an \boldsymbol{H} ellipsoid of $s=\min \left(p, d f_{h}\right)$ dimensions
- Linear hypotheses, of rank h, $H_{0}: \boldsymbol{C}_{h \times q} \boldsymbol{B}_{q \times p}=\mathbf{0}_{h \times p} \mapsto$ sub-ellipsoid of dimension h

$$
\boldsymbol{C}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- 1D tests and contrasts \mapsto degenerate 1D ellipses (lines)

- Beautiful geometry:
- Sub-hypotheses are tangent to enclosing hypotheses
- Orthogonal contrasts form conjugate axes

HE plot details: Contrasts and linear hypotheses

- An overall effect \mapsto an \boldsymbol{H} ellipsoid of $s=\min \left(p, d f_{h}\right)$ dimensions
- Linear hypotheses, of rank h, $H_{0}: \boldsymbol{C}_{h \times q} \boldsymbol{B}_{q \times p}=\mathbf{0}_{h \times p} \mapsto$ sub-ellipsoid of dimension h

$$
\boldsymbol{C}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- 1D tests and contrasts \mapsto degenerate 1D ellipses (lines)

- Beautiful geometry:
- Sub-hypotheses are tangent to enclosing hypotheses
- Orthogonal contrasts form conjugate axes

HE plot matrices: All bivariate views

AL stands out opposite pattern $r(\overline{F e}, \overline{M g}) \approx 1$

R> pairs (pottery.mod)

Outline

(1) Background

- Overview
- Visual overview
- Data ellipses
- The Multivariate Linear Model
(2) Hypothesis Error (HE) plots
- Motivating example
- Visualizing H and E variation
- MANOVA designs
(3) Reduced-rank displays
- Low-D displays of high-D data
- Canonical discriminant HE plots
(4) Recent extensions
- Robust MLMs
- Influence diagnostics for MLMs
- Ridge regression plots

(5) Conclusions

Low-D displays of high-D data

- High-D data often shown in 2D (or 3D) views- orthogonal projections in variable space- scatterplot
- Dimension-reduction techniques: project the data into subspace that has the largest shadow-e.g., accounts for largest variance.
- \rightarrow low-D approximation to high-D data

Low-D displays of high-D data

- High-D data often shown in 2D (or 3D) views- orthogonal projections in variable space- scatterplot
- Dimension-reduction techniques: project the data into subspace that has the largest shadow- e.g., accounts for largest variance.
- \rightarrow low-D approximation to high-D data

Canonical discriminant HE plots

- As with biplot, we can visualize MLM hypothesis variation for all responses by projecting \boldsymbol{H} and \boldsymbol{E} into low-rank space.
- Canonical projection: $\boldsymbol{Y}_{n \times p} \mapsto \boldsymbol{Z}_{n \times s}=\boldsymbol{Y E} \boldsymbol{E}^{-1 / 2} \boldsymbol{V}$, where $\boldsymbol{V}=$ eigenvectors of $\boldsymbol{H E}{ }^{-1}$.
- This is the view that maximally discriminates among groups, ie max. \boldsymbol{H} wrt \boldsymbol{E} !

Canonical discriminant HE plots

- Canonical HE plot is just the HE plot of canonical scores, $\left(\boldsymbol{z}_{1}, \boldsymbol{z}_{2}\right)$ in 2D,
- or, $\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \boldsymbol{z}_{3}$, in 3D.
- As in biplot, we add vectors to show relations of the \boldsymbol{y}_{i} response variables to the canonical variates.
- variable vectors here are structure coefficients = correlations of variables with canonical scores.

Canonical discriminant HE plots: Properties

- Canonical variates are uncorrelated: \boldsymbol{E} ellipse is spherical
- \mapsto axes must be equated to preserve geometry
- Variable vectors show how variables discriminate among groups
- Lengths of variable vectors \sim contribution to discrimination

Canonical dim. 1 (99.1\%)

Canonical discriminant HE plots: Pottery data

- Canonical HE plots provide 2D (3D) visual summary of \boldsymbol{H} vs. \boldsymbol{E} variation
- Pottery data: $p=5$ variables, 4 groups $\mapsto d f_{H}=3$
- Variable vectors: Fe, Mg and Al contribute to distingiushing (Caldicot, Llandryn) from (Isle Thorns, Ashley Rails): 96.4\% of mean variation
- Na and Ca contribute an additional 3.5%. End of story!

Outline

(1) Background

- Overview
- Visual overview
- Data ellipses
- The Multivariate Linear Model
(2) Hypothesis Error (HE) plots
- Motivating example
- Visualizing H and E variation
- MANOVA designs
(3) Reduced-rank displays
- Low-D displays of high-D data
- Canonical discriminant HE plots
(4) Recent extensions
- Robust MLMs
- Influence diagnostics for MLMs
- Ridge regression plots

Conclusions

Robust MLMs

- R has a large collection of packages dealing with robust estimation:
- robust : : lmrob(), MASS : : rlm(), for univariate LMs
- robust: : glmrob() for univariate generalized LMs
- High breakdown-bound methods for robust PCA and robust covariance estimation
- However, none of these handle the fully general MLM
- heplots now provides robmlm () for robust MLMs:
- Uses a simple M-estimtor via iteratively re-weighted LS.
- Weights: calculated from Mahalanobis squared distances, using a simple robust covariance estimator, MASS : :cov. trob () and a weight function, $\psi\left(D^{2}\right)$.

$$
\begin{equation*}
D^{2}=(\boldsymbol{Y}-\widehat{\boldsymbol{Y}})^{\top} \boldsymbol{S}_{\text {trob }}^{-1}(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}) \sim \chi_{p}^{2} \tag{1}
\end{equation*}
$$

- This fully extends the "mlm" class
- Compatible with other mlm extensions: car: : :Anova () and heplot ().

Robust MLMs

- R has a large collection of packages dealing with robust estimation:
- robust : : lmrob(), MASS : : rlm(), for univariate LMs
- robust: : glmrob() for univariate generalized LMs
- High breakdown-bound methods for robust PCA and robust covariance estimation
- However, none of these handle the fully general MLM
- heplots now provides robmlm () for robust MLMs:
- Uses a simple M-estimtor via iteratively re-weighted LS.
- Weights: calculated from Mahalanobis squared distances, using a simple robust covariance estimator, MASS : : cov.trob () and a weight function, $\psi\left(D^{2}\right)$.

$$
\begin{equation*}
D^{2}=(\boldsymbol{Y}-\widehat{\boldsymbol{Y}})^{\top} \boldsymbol{S}_{\text {trob }}^{-1}(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}) \sim \chi_{p}^{2} \tag{1}
\end{equation*}
$$

- This fully extends the "mlm" class
- Compatible with other mlm extensions: car: : :Anova() and heplot ().

Robust MLMs: Example

For the Pottery data:

- Some observations are given weights ~ 0
- The E ellipse is considerably reduced, enhancing apparent significance

Robust MLMs: Example

For the Pottery data:

- The \boldsymbol{E} ellipse is considerably reduced, enhancing apparent significance

Influence diagnostics for MLMs

- Influence measures \& diagnostic plots well-developed for univariate LMs
- Influence measures: Cook's D, DFFITS, dfbetas, etc.
- Diagnostic plots: Index plots, car: : : influencePlot () for LMs
- However, these are have been unavailable for MLMs
- The mvinfluence package now provides:
- Calculation for multivariate analogs of univariate influence measures (following Barrett \& Ling, 1992), e.g., Hat values \& Cook's D:

$$
\begin{gather*}
H_{l}=\boldsymbol{X}_{l}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}_{l}^{\top} \tag{2}\\
D_{l}=\left[\operatorname{vec}\left(\boldsymbol{B}-\boldsymbol{B}_{(l)}\right)\right]^{\top}\left[\boldsymbol{S}^{-1} \otimes\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)\right]\left[\operatorname{vec}\left(\boldsymbol{B}-\boldsymbol{B}_{(l)}\right)\right] \tag{3}
\end{gather*}
$$

- Provides deletion diagnostics for subsets (I) of size $m \geq 1$.
- e.g., $m=2$ can reveal cases of masking or joint influence.
- Extension of influencePlot () to the multivariate case.
- A new plot format: leverage-residual (LR) plots (McCulloch \& Meeter, 1983)

Influence diagnostics for MLMs

- Influence measures \& diagnostic plots well-developed for univariate LMs
- Influence measures: Cook's D, DFFITS, dfbetas, etc.
- Diagnostic plots: Index plots, car: : : influencePlot () for LMs
- However, these are have been unavailable for MLMs
- The mvinfluence package now provides:
- Calculation for multivariate analogs of univariate influence measures (following Barrett \& Ling, 1992), e.g., Hat values \& Cook's D:

$$
\begin{gather*}
H_{l}=\boldsymbol{X}_{l}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}_{l}^{\top} \tag{2}\\
D_{l}=\left[\operatorname{vec}\left(\boldsymbol{B}-\boldsymbol{B}_{(I)}\right)\right]^{\top}\left[\boldsymbol{S}^{-1} \otimes\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)\right]\left[\operatorname{vec}\left(\boldsymbol{B}-\boldsymbol{B}_{(l)}\right)\right] \tag{3}
\end{gather*}
$$

- Provides deletion diagnostics for subsets (I) of size $m \geq 1$.
- e.g., $m=2$ can reveal cases of masking or joint influence.
- Extension of influencePlot () to the multivariate case.
- A new plot format: leverage-residual (LR) plots (McCulloch \& Meeter, 1983)

Influence diagnostics for MLMs: Example

For the Rohwer data:

Cook's D vs. generalized Hat value

Leverage - Residual (LR) plot

Influence diagnostics for MLMs: LR plots

- Main idea: Influence ~ Leverage $(\mathrm{L}) \times$ Residual (R)
- $\mapsto \log (I n f I)=\log (L)+\log (R)$
- \mapsto contours of constant influence lie on lines with slope $=-1$.
- Bubble size ~influence (Cook's D)
- This simplifies interpretation of influence measures

Ridge regression plots

Shrinkage methods often use ridge trace plots to visualize effects

- Typical: univariate line plot of $\boldsymbol{\beta}_{k}$ vs. shrinkage, k
- What can you see here regarding bias vs. precision?
- This is the wrong graphic form, for a multivariate problem!
- Goal: visualize $\widehat{\boldsymbol{\beta}}_{k}$ vs. $\widehat{\operatorname{Var}}\left(\widehat{\boldsymbol{\beta}_{k}}\right)$

Generalized ridge trace plots

Rather than plotting just the univariate trajectories of $\boldsymbol{\beta}_{k} \mathrm{vs}$. K, plot the 2D (3D) confidence ellipsoids over the same range of k.

- Centers of the ellipsoids are $\widehat{\boldsymbol{\beta}_{k}}$ - same info as in univariate plot.
- Can see how change in one coefficient is related to changes in others.
- Relative size \& shape of ellipsoids show directly effect on precision.

Conclusions: Graphical methods for MLMs

Summary \& Opportunities

- Data ellipse: visual summary of bivariate relations
- Useful for multiple-group, MANOVA data
- Embed in scatterplot matrix: pairwise, bivariate relations
- Easily extend to show partial relations, robust estimators, etc.
- HE plots: visual summary of multivariate tests for MANOVA and MMRA
- Group means (MANOVA) or 1-df H vectors (MMRA) aid interpretation
- Embed in HE plot matrix: all pairwise, bivariate relations
- Extend to show partial relations: HE plot of "adjusted responses"

Conclusions: Graphical methods for MLMs

- Data ellipse: visual summary of bivariate relations
- Useful for multiple-group, MANOVA data
- Embed in scatterplot matrix: pairwise, bivariate relations
- Easily extend to show partial relations, robust estimators, etc.
- HE plots: visual summary of multivariate tests for MANOVA and MMRA
- Group means (MANOVA) or 1 -df H vectors (MMRA) aid interpretation
- Embed in HE plot matrix: all pairwise, bivariate relations
- Extend to show partial relations: HE plot of "adjusted responses"
- Dimension-reduction techniques: low-rank (2D) visual summaries
- Biplot: Observations, group means, biplot data ellipses, variable vectors
- Canonical HE plots: Similar, but for dimensions of maximal discrimination

Conclusions: Graphical methods for MLMs

- Data ellipse: visual summary of bivariate relations
- Useful for multiple-group, MANOVA data
- Embed in scatterplot matrix: pairwise, bivariate relations
- Easily extend to show partial relations, robust estimators, etc.
- HE plots: visual summary of multivariate tests for MANOVA and MMRA
- Group means (MANOVA) or 1-df H vectors (MMRA) aid interpretation
- Embed in HE plot matrix: all pairwise, bivariate relations
- Extend to show partial relations: HE plot of "adjusted responses"
- Dimension-reduction techniques: low-rank (2D) visual summaries
- Biplot: Observations, group means, biplot data ellipses, variable vectors
- Canonical HE plots: Similar, but for dimensions of maximal discrimination
- Beautiful and useful geometries:
- Ellipses everywhere; eigenvector-ellipse geometries!
- Visual representation of significance in MLM
- Opportunities for other extensions
— FIN et Merci —

Conclusions: Graphical methods for MLMs

- Data ellipse: visual summary of bivariate relations
- Useful for multiple-group, MANOVA data
- Embed in scatterplot matrix: pairwise, bivariate relations
- Easily extend to show partial relations, robust estimators, etc.
- HE plots: visual summary of multivariate tests for MANOVA and MMRA
- Group means (MANOVA) or 1-df H vectors (MMRA) aid interpretation
- Embed in HE plot matrix: all pairwise, bivariate relations
- Extend to show partial relations: HE plot of "adjusted responses"
- Dimension-reduction techniques: low-rank (2D) visual summaries
- Biplot: Observations, group means, biplot data ellipses, variable vectors
- Canonical HE plots: Similar, but for dimensions of maximal discrimination
- Beautiful and useful geometries:
- Ellipses everywhere; eigenvector-ellipse geometries!
- Visual representation of significance in MLM
- Opportunities for other extensions

> — FIN et Merci —

