trajectories: Classes, methods and data analysis

Mehdi Moradi Joint work with Edzer Pebesma and Jorge Mateu

Public University of Navarra Department of Statistics, Informatics and Mathematics Pamplona, Spain

Example	Classes	Methods	Data analysis	Summary	References

Moving objects

Classes

Methods

Exploratory data analysis

Summary

Example	Classes	Methods	Data analysis	Summary	References
Moving o	bjects				

Ξ	xample	Classes	Methods	Data analysis	Summary	References
		•				
		•				

Example	Classes	Methods	Data analysis	Summary	References
	•	•••			
	•				

Example	Classes	Methods	Data analysis	Summary	References

Figure: Trajectory pattern.

Example	Classes	Methods	Data analysis	Summary	References

Figure: Movement of 50 taxis in Beijing (China) during the period of Feb. 2 to Feb. 8; 2008.

Example	Classes	Methods	Data analysis	Summary	References

Classes to handle movement data in trajectories R package:

- Track: Single track followed by a moving object.
- **Tracks:** Collection of tracks followed by a single moving object.
- TracksCollection: Collection of tracks followed by a group of moving objects.
 - Inner/nested classes: list, data.frame, SpatialPoints, xts/zoo, POSIXct/POSIXt.

Example	Classes	Methods	Data analysis	Summary	References

Method	Operation
dim	number of spatial points
summary	Summarises the internal information
proj4string	projection attributes
coordinates	coordinates of spatial locations
coordnames	coordinate names of fixes
bbox	The box which contains the objects
stbox	The spatio-temporal box which contains the objects
aggregate	Spatially aggregate track properties (coercing fixes to points)
compare	Compares two Track objects: for the common time period
dists	distance matrix with distances for each pair of tracks
downsample	Remove fixes from a Track
frechetDist	Fréchet distance between two Track objects
stcube	Draw a space-time cube
stplot	Create trellis plot for TracksCollection objects
cut	Obtain ranges of space and time coordinates

 Simulation techniques (see functions rTrack, rTracks, rTracksCollection) and fitting ARIMA models (see function auto.arima.Track). trajectories: analysing movement data

Example	Classes	Methods	Data analysis	Summary	References

Figure: Beijing (China) and its surrounding.

Example	Classes	Methods	Data analysis	Summary	References

Figure: Beijing (China) and its surrounding.

- 10,357 taxis,
- During one week (Feb. 2 a Feb. 8, 2008),
- cleaned data:
 - 5642 taxis,
 - The total number of points is more than 10 millions,
 - Total distance passed by taxis reaches 7 millions Km.

Example	Classes	Methods	Data analysis	Summary	References

- 10,357 taxis,
- During one week (Feb. 2 a Feb. 8, 2008),
- cleaned data:
 - 5642 taxis,
 - The total number of points is more than 10 millions,
 - Total distance passed by taxis reaches 7 millions Km.

Figure: Beijing (China) and its surrounding.

• install.packages("taxidata", repos =
 "http://pebesma.staff.ifgi.de" ,type = "source")

Example	Classes	Methods	Data analysis	Summary	References

Algorithm 1 Trajectory pattern $S = \{s_1, \ldots, s_n\}$ as series of spatial point patterns

- 1: Retrieve the range of time of *S* using the function range in trajectories.
- 2: Create a regular sequence of time based on the obtained range and a given timestamp using the function tsqTracks. Let say $T = \{t_1, t_2, \dots, t_m\}$ is the obtained regular sequence of time.
- Reconstruct each s_i, i = 1, ..., n, using the function reTrack and based on the sequence of time T.
- 4: The corresponding locations (points) to each t_i, i = 1,..., m, is a spatial point pattern and is denoted by x_i, i = 1,..., m.

The average pairwise distances for point pattern \mathbf{x}_i , i = 1, ..., m is then of the form

$$\overline{D}_i = \frac{2}{n_i(n_i-1)} \sum_{h \neq k} \|x_i^k - x_i^h\|, \qquad 1 \le h, k \le n_i.$$

$$(1)$$

See function avedistTrack

Figure: Average pairwise distance between taxis in Beijing (China). Within the period 2-8, Feb 2008.

Example	Classes	Methods	Data analysis	Summary	References
Distance	analysis				

Figure: Average pairwise distance between taxis in Beijing (China). During 3*rd* of Feb 2008.

Assume a situation where the data points $\{x_1, x_2, \ldots, x_n\}$ are marked by numeric values $\{z_1, z_2, \ldots, z_n\}$. Then the smoothed value at an arbitrary location $u \in W$, W is the observed window of our data points, is

Data analysis

Methods

$$Q(u) = \frac{\sum_{j=1}^{n} z_{j}\xi_{j}}{\sum_{j=1}^{n} \xi_{j}},$$
(2)

where

Example

$$\xi_j = \frac{1}{(\|u - x_j\|)^p},$$
(3)

that *p* is an integer (Baddeley and Turner, 2005; Baddeley et al., 2015).

Classes

References

Example	Classes	Methods	Data analysis	Summary	References

Algorithm 2 Trajectory pattern $S = \{s_1, \ldots, s_n\}$ as series of segment patterns

- 1: Follow the steps in Algorithm 1.
- Using each two consecutive point patterns, say x_i and x_{i+1}, i = 1,..., m−1, make a segment pattern by connecting the current location of each taxi to its previous location.
- 3: Call the segment patterns $\mathbf{y}_1, \ldots, \mathbf{y}_{m-1}$.
 - See function as.Track.arrow

Example	Classes	Methods	Data analysis	Summary	References

Convert obtained segment patterns y_1, \ldots, y_{m-1} from Algorithm 2 to m-1 marked point patterns in which points are the mid-points of segments and marks are the length of segments.

• See function idw.Track

Example

M

Methods

Data analysis

Summa

References

Movement smoothing

Classes

Figure: Movement (per 20 minuets and longer than 1km) smoothing for taxi data in Beijing (China).

We next propose an average intensity estimate so that we first convert a trajectory pattern S to spatial point patterns $\mathbf{x}_1, \ldots, \mathbf{x}_m$, and then we estimate the intensity of each pattern $\mathbf{x}_i, i = 1, \ldots, m$, denoted by $\hat{\lambda}_1, \ldots, \hat{\lambda}_m$, finally the estimated intensity of trajectory pattern S is of the form

$$\overline{\lambda}(u) = \frac{1}{m} \sum_{i=1}^{m} \widehat{\lambda}_i(u), \qquad u \in W,$$
 (4)

where $\widehat{\lambda}_i(\cdot), i = 1, ..., m$, can be obtained from any non-parametric or parametric method.

See function density.list

Example

M

Methods

Data analysis

Summa

References

27

Intensity estimation

Classes

Figure: Estimated intensity of the trajectory pattern of taxi data in Beijing (China).

Example Classes Methods Data analysis Summary References

Figure: Focus on the metropolitan area of Beijing (China).

Example Classes Methods Data analysis Summary References
Chi-squared maps

Let
$$\lambda_1^{\text{est}} = \widehat{\lambda}_1, \dots, \lambda_m^{\text{est}} = \widehat{\lambda}_m$$
 and

$$\lambda_{j}^{\exp}(u) = \frac{\sum_{i=1}^{m} \lambda_{i}^{\exp}(u) \sum_{\nu \in W} \lambda_{j}^{\exp}(\nu)}{\sum_{i=1}^{m} \sum_{\nu \in W} \lambda_{i}^{\exp}(\nu)}, \qquad 1 \le j \le m.$$
(5)

We call $\lambda_j^{\exp}(u)$ the expected intensity at location u and time t_j . Define the χ^2 statistics as

$$\chi_j^2(u) = \frac{\lambda_j^{\text{est}}(u) - \lambda_j^{\text{exp}}(u)}{\sqrt{\lambda_j^{\text{exp}}(u)}}, \qquad 1 \le j \le m.$$
(6)

Figure: Chi-squared maps (values are multipled by 1000). *Left*: Morning, *Middle*: afternoon, *Right*: Night.

• See function chimaps

Example	Classes	Methods	Data analysis	Summary	References
Chi-squar	ed maps				

We denote the estimated K-functions for $\mathbf{x}_1, \ldots, \mathbf{x}_m$ by $\widehat{K}_1, \ldots, \widehat{K}_m$. An average version of K-functions is of the form

$$\overline{K}(r) = \frac{1}{m} \sum_{i=1}^{m} \widehat{K}_i(r), \qquad r \ge 0.$$
(7)

We look at minimum and maximum values of the estimated K-functions as

$$\widehat{\mathcal{K}}^{\mathrm{high}}(r) = \max_{r} [\widehat{\mathcal{K}}_{i}(r)], \qquad \widehat{\mathcal{K}}^{\mathrm{low}}(r) = \min_{r} [\widehat{\mathcal{K}}_{i}(r)], \qquad i = 1, \dots, m.$$

• See function Kinhom.Track

Example	Classes	Methods	Data analysis	Summary	References
K-functio	n				

Figure: Variability area of K-function.

Mehdi Moradi - useR!2019

Summary

Example	Classes	Methods	Data analysis	Summary	References

What R package trajectories provides:

- Classes and methods.
- Simulation techniques and model fitting.
- Distance analysis.
- Movement smoothing.
- Intensity estimation.
- Chi-squared maps.
- Second-order summary statistics.

- Baddeley, A., Rubak, E., and Turner, R. (2015). *Spatial Point Patterns: Methodology and Applications with R.* CRC Press.
- Baddeley, A. and Turner, R. (2005). Spatstat: an R package for analyzing spatial point patterns. *Journal of Statistical Software*, 12(6):1–42.

" Q&A "

Get in touch

- Email: m2.moradi@yahoo.com
- twitter: @m2_moradi
- github: @Moradii