The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000	0	

MERLIN - multivariate Mixed-Effects Regression for LInear, Non-linear and user defined models

Emma C. Martin, Alessandro Gasparini, Michael J. Crowther

Department of Health Sciences, University of Leicester, UK, emma.martin@le.ac.uk

Funding: MRC (MR/P015433/1)

	The Motivation ●00	The Goal 00	The Example 000000000000000000000000000000000000	The Future O	References
--	-----------------------	----------------	---	-----------------	------------

The Motivation ●00	The Goal 00	The Example	The Future O	References

Increasing access to big data such as electronic health records (EHRs)

The Motivation ●00	The Goal 00	The Example	The Future 0	References

Increasing access to big data such as electronic health records (EHRs)

multi-level (biomarkers < patients < GP practice area < geographical regions...)</p>

Increasing access to big data such as electronic health records (EHRs)

- multi-level (biomarkers < patients < GP practice area < geographical regions...)</p>
- multiple related outcomes (biomarkers, survival endpoints)

The Motivation 0●0	The Goal 00	The Example	The Future O	References

Joint longitudinal survival models

Joint longitudinal survival models

- stjm in Stata (Crowther et al., 2013)
- gsem in Stata
- frailtypack in R (Rondeau et al., 2012)
- joineR and joineRML in R (Philipson et al., 2018; Hickey et al., 2018)
- ► JM and JMBayes in R (Rizopoulos, 2016)

The Motivation 000	The Goal ●0	The Example 000000000000000000000000000000000000	The Future 0	References

The Goal

We want to increase the flexibility of joint longitudinal survival models, including extensions:

- competing risks (Li et al., 2009)
- different types of outcomes (Rizopoulos et al., 2008)
- multiple continuous outcomes (Lin et al., 2002)
- delayed entry (Crowther et al., 2016)
- recurrent events and a terminal event (Krol et al., 2016)
- predictions (Barrett and Su, 2017)

The Motivation 000	The Goal 0●	The Example 000000000000000000000000000000000000	The Future O	References

MERLIN

- ► Tutorial paper in Stata (Crowther, 2018)
- www.mjcrowther.co.uk/software/merlin

MICHAEL J. CROWTHER	Home	Publications	Software	Posts	Projects	Teaching	
Survival (time-to-event) analysis							
Parametric surv	vival mode	l with a frail	ty/randor	n intere	cept [Dra	ft]	
 Parametric surv 	• Parametric survival model with random coefficients [TBA]						
 Three-level sur 	• Three-level survival models - IPD meta-analysis of recurrent event data						
[Draft, Sim]	[Draft, Sim]						
 Royston-Parma 	ar multilev	vel survival n	nodels [TI	BA]			
User-defined h	azard mod	lels – an exa	mple with	fractio	nal polyr	iomials	
[Tutorial]							
 Interval-censor 	red surviva	al analysis [ˈ]	[utorial]				
• Individual patie	ent data ne	twork meta	-analysis	of surv	ival data	[TBA]	

The Motivation	The Goal	The Example	The Future	References
000	00	●000000000000000000000000000000000000	0	

The Motivation	The Goal	The Example	The Future	References
000	00	•••••••••••••••••••		

To illustrate the flexibility we will use a single dataset of patients with primary biliary cirrhosis

 312 patients with PBC collected at the Mayo Clinic 1974-1984 (Murtaugh et al., 1994)

The Motivation	The Goal	The Example	The Future	References
000	00	•00000000000000000000000	0	

- 312 patients with PBC collected at the Mayo Clinic 1974-1984 (Murtaugh et al., 1994)
- 158 randomised to receive D-penicillamine and 154 to placebo

The Motivation	The Goal	The Example	The Future	References
000	00	•00000000000000000000000	0	

- 312 patients with PBC collected at the Mayo Clinic 1974-1984 (Murtaugh et al., 1994)
- 158 randomised to receive D-penicillamine and 154 to placebo
- ▶ survival outcome is all-cause death, with 140 events

The Motivation	The Goal	The Example	The Future	References
000	00	•00000000000000000000000	0	

- 312 patients with PBC collected at the Mayo Clinic 1974-1984 (Murtaugh et al., 1994)
- 158 randomised to receive D-penicillamine and 154 to placebo
- ▶ survival outcome is all-cause death, with 140 events
 - We will simulate competing risks of death for illustration

The Motivation	The Goal	The Example	The Future	References
000	00	•00000000000000000000000		

- 312 patients with PBC collected at the Mayo Clinic 1974-1984 (Murtaugh et al., 1994)
- 158 randomised to receive D-penicillamine and 154 to placebo
- ▶ survival outcome is all-cause death, with 140 events
 - ▶ We will simulate competing risks of death for illustration
- 1945 repeated measurements of serum bilirubin, as well as other longitudinal biomarkers

The Motivation	The Goal	The Example	The Future	References
000	00	•000000000000000000000000	0	

- 312 patients with PBC collected at the Mayo Clinic 1974-1984 (Murtaugh et al., 1994)
- 158 randomised to receive D-penicillamine and 154 to placebo
- ▶ survival outcome is all-cause death, with 140 events
 - ► We will simulate competing risks of death for illustration
- 1945 repeated measurements of serum bilirubin, as well as other longitudinal biomarkers
- a formatted version of this data set is included in the merlin package in R

The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000000		

	id	stime	died	cancer	other	trt	time	logb	logp
1	1	1.095	1	1	0	1	0.000	2.674	2.501
2	1	NA	NA	NA	NA	1	0.526	3.059	2.416
3	3	2.771	1	0	1	1	0.000	0.336	2.485
4	3	NA	NA	NA	NA	1	0.482	0.095	2.485
5	3	NA	NA	NA	NA	1	0.997	0.405	2.485
6	3	NA	NA	NA	NA	1	2.034	0.588	2.588
7	7	6.848	0	0	0	0	0.000	0.000	2.272
8	7	NA	NA	NA	NA	0	1.073	0.182	2.370
9	7	NA	NA	NA	NA	0	1.492	-0.223	2.370
10	7	NA	NA	NA	NA	0	2.081	0.000	2.332
11	7	NA	NA	NA	NA	0	3.083	0.182	2.389
12	7	NA	NA	NA	NA	0	4.077	0.182	2.434
13	7	NA	NA	NA	NA	0	6.193	0.336	2.485

The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000000		

	id	stime	died	cancer	other	trt	time	logb	logp
1	1	1.095	1	1	0	1	0.000	2.674	2.501
2	1	NA	NA	NA	NA	1	0.526	3.059	2.416
3	3	2.771	1	0	1	1	0.000	0.336	2.485
4	3	NA	NA	NA	NA	1	0.482	0.095	2.485
5	3	NA	NA	NA	NA	1	0.997	0.405	2.485
6	3	NA	NA	NA	NA	1	2.034	0.588	2.588
7	7	6.848	0	0	0	0	0.000	0.000	2.272
8	7	NA	NA	NA	NA	0	1.073	0.182	2.370
9	7	NA	NA	NA	NA	0	1.492	-0.223	2.370
10	7	NA	NA	NA	NA	0	2.081	0.000	2.332
11	7	NA	NA	NA	NA	0	3.083	0.182	2.389
12	7	NA	NA	NA	NA	0	4.077	0.182	2.434
13	7	NA	NA	NA	NA	0	6.193	0.336	2.485

Emmal	Martin	

The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000000		

	id	stime	died	cancer	other	trt	time	logb	logp
1	1	1.095	1	1	0	1	0.000	2.674	2.501
2	1	NA	NA	NA	NA	1	0.526	3.059	2.416
3	3	2.771	1	0	1	1	0.000	0.336	2.485
4	3	NA	NA	NA	NA	1	0.482	0.095	2.485
5	3	NA	NA	NA	NA	1	0.997	0.405	2.485
6	3	NA	NA	NA	NA	1	2.034	0.588	2.588
7	7	6.848	0	0	0	0	0.000	0.000	2.272
8	7	NA	NA	NA	NA	0	1.073	0.182	2.370
9	7	NA	NA	NA	NA	0	1.492	-0.223	2.370
10	7	NA	NA	NA	NA	0	2.081	0.000	2.332
11	7	NA	NA	NA	NA	0	3.083	0.182	2.389
12	7	NA	NA	NA	NA	0	4.077	0.182	2.434
13	7	NA	NA	NA	NA	0	6.193	0.336	2.485

Emma Martin	MERI
-------------	------

The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000000		

Longitudinal biomarker - linear model

```
merlin(
model = logb ~ time,
timevar = "time",
family = "gaussian",
data = pbc)
```

Longitudinal biomarker - restricted cubic splines

```
merlin(
model = logb ~ rcs(time, df = 3),
timevar = "time",
family = "gaussian",
data = pbc)
```

000 00 00000000000000000000000000000000	The Motivation	The Goal	The Example	The Future	References
	000	00	000000000000000000000000000000000000000	0	

Longitudinal biomarker - random intercept

```
merlin(
model = logb ~ rcs(time, df = 3) + M1[id]*1,
level = "id",
timevar = "time",
family = "gaussian",
data = pbc)
```

000 00 0000000000000000 0	The Motivation	The Goal	The Example	The Future	References
	000	00	000000000000000000000000000000000000000	0	<u>. </u>

Longitudinal biomarker - random slope

The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000000		

Longitudinal biomarker - covariance structure

Joint longitudinal-survival model

A number of time-to-event models are available in merlin, including standard models such as

- Weibull
- Exponential
- ► Gompertz

Joint longitudinal-survival model

A number of time-to-event models are available in merlin, including standard models such as

- ► Weibull
- Exponential
- Gompertz

Additionally a range of more flexible models are also available including

- Royston-Parmar restricted cubic splines on log cumulative hazard scale
- Restricted cubic splines on log hazard scale

The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000000		

Joint model - survival submodel

The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000	0	

The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000	0	

The Motivation	The Goal 00	The Example oooooooooooooooooooooooooo	The Future 0	References

The Motivation	The Goal 00	The Example oooooooooooooooooooooooooo	The Future ⊙	References

The Motivation	The Goal 00	The Example oooooooooooooooooooooooooo	The Future 0	References

The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000000	0	

Joint model - time dependent effects

The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000000		

Joint model - competing risks

```
merlin(
model = list(logb \sim rcs(time, df = 3) + M1[id]*1
                 + time:M2[id]*1,
              Surv(stime, cancer) \sim trt + EV[logb]
                 + trt:fp(stime, powers = c(0)),
              Surv(stime, other) \sim trt + dEV[logb]
                 + rcs(stime, df = 3, log = T)),
level = "id".
timevar = c("time", "stime"),
family = c("gaussian", "weibull", "rp"),
covariance = "unstructured",
data = pbc)
```

The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000000		

Joint model - competing risks

```
merlin(
model = list(logb \sim rcs(time, df = 3) + M1[id]*1
                 + time:M2[id]*1,
              Surv(stime, cancer) \sim trt + EV[logb]
                 + trt:fp(stime, powers = c(0)),
              Surv(stime, other) \sim trt + dEV[logb]
                 + rcs(stime, df = 3, log = T)),
level = "id".
timevar = c("time", "stime"),
family = c("gaussian", "weibull", "rp"),
covariance = "unstructured",
data = pbc)
```

The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000000		

Joint model - multiple biomarkers

```
merlin(
model = list(logb \sim rcs(time, df = 3) + M1[id]*1
                 + time:M2[id]*1,
              logp \sim rcs(time, df = 3) + M3[id]*1,
              Surv(stime, cancer) \sim trt + EV[logb]
                 + trt:fp(stime, powers = c(0)),
              Surv(stime, other) \sim trt + dEV[logb]
                 + rcs(stime, df = 3, log = T)),
level = "id".
timevar = c("time", "stime"),
family = c("gaussian", "gaussian", "weibull", "rp"),
covariance = "unstructured",
data = pbc)
```

The Motivation	The Goal 00	The Example 000000000000000000000000000000000000	The Future 0	References

Joint model - multiple biomarkers

```
merlin(
model = list(logb \sim rcs(time, df = 3) + M1[id]*1
                 + time:M2[id]*1.
              logp \sim rcs(time, df = 3) + M3[id]*1,
              Surv(stime, cancer) \sim trt + EV[logb]
                 + EV[logp] + iEV[logp]
                 + trt:fp(stime, powers = c(0)),
              Surv(stime, other) \sim trt + dEV[logb]
                 + rcs(stime, df = 3, log = T)),
level = "id",
timevar = c("time", "stime"),
family = c("gaussian", "gaussian", "weibull", "rp"),
covariance = "unstructured",
data = pbc)
```

The Motivation	The Goal 00	The Example 000000000000000000000000000000000000	The Future 0	References

Joint model - final model

```
merlin(
model = list(logb \sim rcs(time, df = 3) + M1[id]*1
                 + time:M2[id]*1.
              logp \sim rcs(time, df = 3) + M3[id]*1,
              Surv(stime, cancer) \sim trt + EV[logb]
                 + EV[logp] + iEV[logp]
                 + trt:fp(stime, powers = c(0)),
              Surv(stime, other) \sim trt + dEV[logb]
                 + rcs(stime, df = 3, log = T)),
level = "id",
timevar = c("time", "stime"),
family = c("gaussian", "gaussian", "weibull", "rp"),
covariance = "unstructured",
data = pbc)
```

Clinically meaningful predictions

e.g. using the predict function we can calculate the marginal cause-specific cumulative incidence function, which tells us the probability of an event in the presence of competing events,

Using the marginal option allows us to interpret them as population-average predictions.

The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000000		

Clinically meaningful predictions

We can specify the level of a covariate, in order to investigate the effect of covariates (such as treatment) on predictions

Treated group

The Motivation	The Goal	The Example	The Future	References
000	00	000000000000000000000000000000000000	●	

The future

- Dynamic risk prediction
- Timing of observations informative observation process (Gasparini et al., 2018)
- merlin is very flexible, and hence it can be slow(er)
- Penalisation
- Scalability sample weights
- Updates and tutorials are available on the website www.mjcrowther.co.uk/software/merlin

The Motivation	The Goal 00	The Example	The Future 0	References

References I

- Barrett, J. and Su, L. Dynamic predictions using flexible joint models of longitudinal and time-to-event data. *Statistics in Medicine*, 36(9):1447–1460, 2017.
- Crowther, M. J. merlin a unified modelling framework for data analysis and methods development in Stata. *arXiv e-prints*, art. arXiv:1806.01615, Jun 2018.
- Crowther, M. J., Abrams, K. R., and Lambert, P. C. Joint modeling of longitudinal and survival data. *Stata Journal*, 13(1):165–184, 2013.
- Crowther, M. J., Andersson, T. M., Lambert, P. C., Abrams, K. R., and Humphreys, K. Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification. *Stat Med*, 35(7):1193–209, 2016.
- Gasparini, A., Abrams, K. R., Barrett, J. K., Major, R. W., Sweeting, M. J., Brunskill, N. J., and Crowther, M. J. Mixed effects models for healthcare longitudinal data with an informative visiting process: a Monte Carlo simulation study. arXiv e-prints, art. arXiv:1808.00419, Aug 2018.
- Hickey, G. L., Philipson, P., Jorgensen, A., and Kolamunnage-Dona, R. joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes. *BMC Medical Research Methodology*, 18(1):50, 2018.

The Motivation	The Goal 00	The Example 000000000000000000000000000000000000	The Future 0	References		
References II						

- Krol, A., Ferrer, L., Pignon, J. P., Proust-Lima, C., Ducreux, M., Bouche, O., Michiels, S., and Rondeau, V. Joint model for left-censored longitudinal data, recurrent events and terminal event: Predictive abilities of tumor burden for cancer evolution with application to the ffcd 2000-05 trial. *Biometrics*, 72(3):907–16, 2016.
- Li, N., Elashoff, R. M., and Li, G. Robust joint modeling of longitudinal measurements and competing risks failure time data. *Biom J*, 51(1):19–30, 2009.
- Lin, H., McCulloch, C. E., and Mayne, S. T. Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. *Stat Med*, 21 (16):2369–82, 2002.
- Murtaugh, P. A., Dickson, E. R., Vandam, G. M., Malinchoc, M., Grambsch, P. M., Langworthy, A. L., and Gips, C. H. Primary biliary-cirrhosis - prediction of short-term survival based on repeated patient visits. *Hepatology*, 20(1):126–134, 1994.
- Philipson, P., Sousa, I., Diggle, P. J., Williamson, P., Kolamunnage-Dona, R., Henderson, R., and Hickey, G. L. *joineR: Joint Modelling of Repeated Measurements and Time-to-Event Data*, 2018.
- Rizopoulos, D. The r package jmbayes for fitting joint models for longitudinal and time-to-event data using mcmc. *Journal of Statistical Software*, 72(7):1–46, 2016.

The Motivation	The Goal 00	The Example	The Future 0	References

References III

- Rizopoulos, D., Verbeke, G., Lesaffre, E., and Vanrenterghem, Y. A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros. *Biometrics*, 64(2):611–9, 2008.
- Rondeau, V., Mazroui, Y., and Gonzalez, J. R. frailtypack: An r package for the analysis of correlated survival data with frailty models using penalized likelihood estimation or parametrical estimation. *Journal of Statistical Software*, 47(4):1–28, 2012.