
The Motivation The Goal The Example The Future References

MERLIN - multivariate
Mixed-Effects Regression for LInear,
Non-linear and user defined models

Emma C. Martin,
Alessandro Gasparini, Michael J. Crowther

Department of Health Sciences,
University of Leicester, UK,

emma.martin@le.ac.uk

Funding: MRC (MR/P015433/1)

Emma Martin MERLIN 10th July 2019 useR! 2019



The Motivation The Goal The Example The Future References

The motivation

Increasing access to big data such as electronic health records
(EHRs)
▶ multi-level (biomarkers < patients < GP practice area <

geographical regions...)
▶ multiple related outcomes (biomarkers, survival

endpoints)
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Joint longitudinal survival models
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Joint longitudinal survival models

▶ stjm in Stata (Crowther et al., 2013)
▶ gsem in Stata
▶ frailtypack in R (Rondeau et al., 2012)
▶ joineR and joineRML in R (Philipson et al., 2018;

Hickey et al., 2018)
▶ JM and JMBayes in R (Rizopoulos, 2016)
▶ ...
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The Goal

We want to increase the flexibility of joint longitudinal survival
models, including extensions:
▶ competing risks (Li et al., 2009)
▶ different types of outcomes (Rizopoulos et al., 2008)
▶ multiple continuous outcomes (Lin et al., 2002)
▶ delayed entry (Crowther et al., 2016)
▶ recurrent events and a terminal event (Krol et al., 2016)
▶ predictions (Barrett and Su, 2017)
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MERLIN
▶ Tutorial paper in Stata (Crowther, 2018)
▶ www.mjcrowther.co.uk/software/merlin
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Primary biliary cirrhosis
To illustrate the flexibility we will use a single dataset of
patients with primary biliary cirrhosis

▶ 312 patients with PBC collected at the Mayo Clinic
1974-1984 (Murtaugh et al., 1994)

▶ 158 randomised to receive D-penicillamine and 154 to
placebo

▶ survival outcome is all-cause death, with 140 events
▶ We will simulate competing risks of death for illustration

▶ 1945 repeated measurements of serum bilirubin, as well
as other longitudinal biomarkers

▶ a formatted version of this data set is included in the
merlin package in R
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Primary biliary cirrhosis data
id stime died cancer other trt time logb logp

1 1 1.095 1 1 0 1 0.000 2.674 2.501
2 1 NA NA NA NA 1 0.526 3.059 2.416
3 3 2.771 1 0 1 1 0.000 0.336 2.485
4 3 NA NA NA NA 1 0.482 0.095 2.485
5 3 NA NA NA NA 1 0.997 0.405 2.485
6 3 NA NA NA NA 1 2.034 0.588 2.588
7 7 6.848 0 0 0 0 0.000 0.000 2.272
8 7 NA NA NA NA 0 1.073 0.182 2.370
9 7 NA NA NA NA 0 1.492 -0.223 2.370
10 7 NA NA NA NA 0 2.081 0.000 2.332
11 7 NA NA NA NA 0 3.083 0.182 2.389
12 7 NA NA NA NA 0 4.077 0.182 2.434
13 7 NA NA NA NA 0 6.193 0.336 2.485
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Longitudinal biomarker - linear model

merlin(
model = logb ∼ time,
timevar = "time",
family = "gaussian",
data = pbc)

Emma Martin MERLIN 10th July 2019 useR! 2019



The Motivation The Goal The Example The Future References

Longitudinal biomarker - restricted cubic splines

merlin(
model = logb ∼ rcs(time, df = 3),
timevar = "time",
family = "gaussian",
data = pbc)
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Longitudinal biomarker - random intercept

merlin(
model = logb ∼ rcs(time, df = 3) + M1[id]*1,
level = "id",
timevar = "time",
family = "gaussian",
data = pbc)
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Longitudinal biomarker - random slope

merlin(
model = logb ∼ rcs(time, df = 3) + M1[id]*1

+ time:M2[id]*1,
level = "id",
timevar = "time",
family = "gaussian",
data = pbc)
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Longitudinal biomarker - covariance structure

merlin(
model = logb ∼ rcs(time, df = 3) + M1[id]*1

+ time:M2[id]*1,
level = "id",
timevar = "time",
family = "gaussian",
covariance = "unstructured",
data = pbc)
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Joint longitudinal-survival model

A number of time-to-event models are available in merlin,
including standard models such as
▶ Weibull
▶ Exponential
▶ Gompertz

Additionally a range of more flexible models are also available
including
▶ Royston-Parmar - restricted cubic splines on log

cumulative hazard scale
▶ Restricted cubic splines on log hazard scale
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Joint model - survival submodel

merlin(
model = list(logb ∼ rcs(time, df = 3) + M1[id]*1

+ time:M2[id]*1,
Surv(stime, died) ∼ trt),

level = "id",
timevar = "time",
family = c("gaussian", "weibull"),
covariance = "unstructured",
data = pbc)
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Joint model - links

merlin(
model = list(logb ∼ rcs(time, df = 3) + M1[id]*1

+ time:M2[id]*1,
Surv(stime, died) ∼ trt + EV[logb]),

level = "id",
timevar = c("time", "stime"),
family = c("gaussian", "weibull"),
covariance = "unstructured",
data = pbc)
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Joint model - links

merlin(
model = list(logb ∼ rcs(time, df = 3) + M1[id]*1

+ time:M2[id]*1,
Surv(stime, died) ∼ trt + iEV[logb]),

level = "id",
timevar = c("time", "stime"),
family = c("gaussian", "weibull"),
covariance = "unstructured",
data = pbc)
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Joint model - time dependent effects

merlin(
model = list(logb ∼ rcs(time, df = 3) + M1[id]*1

+ time:M2[id]*1,
Surv(stime, died) ∼ trt + EV[logb]

+ trt:fp(stime, powers = c(0))),
level = "id",
timevar = c("time", "stime"),
family = c("gaussian", "weibull"),
covariance = "unstructured",
data = pbc)
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Joint model - competing risks

merlin(
model = list(logb ∼ rcs(time, df = 3) + M1[id]*1

+ time:M2[id]*1,
Surv(stime, cancer) ∼ trt + EV[logb]

+ trt:fp(stime, powers = c(0)),
Surv(stime, other) ∼ trt + dEV[logb]

+ rcs(stime, df = 3, log = T)),
level = "id",
timevar = c("time", "stime"),
family = c("gaussian", "weibull", "rp"),
covariance = "unstructured",
data = pbc)
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Joint model - multiple biomarkers
merlin(
model = list(logb ∼ rcs(time, df = 3) + M1[id]*1

+ time:M2[id]*1,
logp ∼ rcs(time, df = 3) + M3[id]*1,
Surv(stime, cancer) ∼ trt + EV[logb]

+ trt:fp(stime, powers = c(0)),
Surv(stime, other) ∼ trt + dEV[logb]

+ rcs(stime, df = 3, log = T)),
level = "id",
timevar = c("time", "stime"),
family = c("gaussian", "gaussian", "weibull", "rp"),
covariance = "unstructured",
data = pbc)
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Joint model - multiple biomarkers
merlin(
model = list(logb ∼ rcs(time, df = 3) + M1[id]*1

+ time:M2[id]*1,
logp ∼ rcs(time, df = 3) + M3[id]*1,
Surv(stime, cancer) ∼ trt + EV[logb]

+ EV[logp] + iEV[logp]
+ trt:fp(stime, powers = c(0)),

Surv(stime, other) ∼ trt + dEV[logb]
+ rcs(stime, df = 3, log = T)),

level = "id",
timevar = c("time", "stime"),
family = c("gaussian", "gaussian", "weibull", "rp"),
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Joint model - final model
merlin(
model = list(logb ∼ rcs(time, df = 3) + M1[id]*1

+ time:M2[id]*1,
logp ∼ rcs(time, df = 3) + M3[id]*1,
Surv(stime, cancer) ∼ trt + EV[logb]

+ EV[logp] + iEV[logp]
+ trt:fp(stime, powers = c(0)),

Surv(stime, other) ∼ trt + dEV[logb]
+ rcs(stime, df = 3, log = T)),

level = "id",
timevar = c("time", "stime"),
family = c("gaussian", "gaussian", "weibull", "rp"),
covariance = "unstructured",
data = pbc)
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Clinically meaningful predictions

e.g. using the predict function we can calculate the marginal
cause-specific cumulative incidence function, which tells us the
probability of an event in the presence of competing events,

predict(model, stat = "cif", predmodel = 3,
type = "marginal")

Using the marginal option allows us to interpret them as
population-average predictions.
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Clinically meaningful predictions
We can specify the level of a covariate, in order to investigate
the effect of covariates (such as treatment) on predictions

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

Treated group

Time since entry

C
um

ul
at

iv
e 

in
ci

de
nc

e

Prob. of death due to other causes
Prob. of death due to cancer

Emma Martin MERLIN 10th July 2019 useR! 2019



The Motivation The Goal The Example The Future References

The future

▶ Dynamic risk prediction
▶ Timing of observations - informative observation process

(Gasparini et al., 2018)
▶ merlin is very flexible, and hence it can be slow(er)
▶ Penalisation
▶ Scalability - sample weights
▶ Updates and tutorials are available on the website

www.mjcrowther.co.uk/software/merlin
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