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sdcSpatial: Privacy protected maps

Takeout message: sdcSpatial has methods for:
· Creating a raster map: sdc_raster for pop density, value
density and mean density, using the excellent raster package
by Hijmans (2019).
· Finding out which locations are sensitive: plot_sensitive,

is_sensitive.
· Adjusting raster map for protecting data: protect_smooth,

protect_quadtree.
· Removing sensitive locations.
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Who am I and why sdcSpatial?

· Statistical consultant, Data Scientist @cbs.nl / Statistics NL

· Statistics Netherlands is producer main official statistics in the
Netherlands:
− Stats on Demographics, economy (GDP), education,

environment, agriculture, Finance etc.
− Part of the European Statistical System, ESS.

Motivation for sdcSpatial

· ESS has European Code of Statistical Practice (predates
GDPR, European law on Data Protection):
no individual information may be revealed.
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Sdc in sdcSpatial?

SDC = “Statistical Disclosure Control”

Collection of statistical methods to:· Check if data is safe to be published
· Protect data by slightly altering (aggregated) data
− adding noise
− shifting mass
· Most SDC methods operate on records.
· sdcSpatial works upon locations.
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Data

data(dwellings, package="sdcSpatial")
nrow(dwellings)

## [1] 90603

head(dwellings) # consumption/unemployed are simulated!

## x y consumption unemployed
## 1 149712 470104 2049.926 FALSE
## 2 149639 469906 1814.938 FALSE
## 3 149631 469888 2074.882 FALSE
## 4 149788 469831 1927.989 FALSE
## 5 149773 469834 2164.969 FALSE
## 6 149688 469898 1987.958 FALSE
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Let’s create a sdc_raster

Creation:
library(sdcSpatial)
unemployed <- sdc_raster( dwellings[c("x", "y")] # realistic locations

, dwellings$unemployed # simulated data!
, r = 500 # raster resolution of 500m
, min_count = 10 # min support
)

What has been created?
print(unemployed)

## logical sdc_raster object:
## resolution: 500 500 , max_risk: 0.95 , min_count: 10
## mean sensitivity score [0,1]: 0.4249471

42% of the data on this map is sensitive!
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What is sensitivity?

Binary score (logical) per raster cell indicating if it’s unsafe to
publish.

Calculated:
a) Per location (xi , yi) (raster cell)
b) Using risk function disclosure_risk r(x , y) ∈ [0, 1]. How

accurate can an attacker estimate the value of an individual?
If r(xi , yi) > max_risk then (xi , yi) is sensitive.

c) Using a minimum number of observations.
If counti < min_count, then (xi , yi) is sensitive.
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Disclosure risks

External (numeric)

r(x , y) = max vi∑
i∈(x ,y) vi

with vi ∈ R

Discrete (logical)

r(x , y) = 1
n

∑
i∈(x ,y)

vi with vi ∈ {0, 1}
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Type of raster density maps:

(Stored in unemployed$value):

Density can be area-based:

· number of people per square ($count): population density.
· (total) value per square ($sum): number of unemployed per
square.

Or density can population-based:

· Mean value per square ($mean): unemployment rate per
square.

Note: All density types are valid, but (total) value per square
strongly interacts with population density.
(e.g. https://xkcd.com/1138).
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Plotting a sdc_raster

plot(unemployed, "mean")
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How to reduce sensitivity?

Options:
a) Use a coarser raster: sdc_raster.
b) Apply spatial smoothing: protect_smooth method by Wolf

and Jonge (2018), Jonge and Wolf (2016).
c) Aggregate sensitive cells hierarchically with a quad tree until

not sensitive: protect_quadtree method by Suñé et al.
(2017).

d) Remove sensitive locations: remove_sensitive.
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Option: coarser raster
unemployed_1km <- sdc_raster( dwellings[c("x", "y")]

, dwellings$unemployed, r =1e3) # 1km!
plot(unemployed_1km, "mean")
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Option: Coarsening

Pros· Simple and easy explainable

Cons· Detailed spatial patterns are removed
· visually unattractive: “Blocky”
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Option: KDE-smoothing
unemployed_smoothed <- protect_smooth(unemployed, bw = 1500)
plot(unemployed_smoothed, "mean")
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Options: KDE-smoothing

Pro’s· Often enhances spatial pattern visualization, removing spatial
noise.
· Makes it a density map and used as source for e.g. contour
map.

Con’s· Does not remove all sensitive values (depends on bandwidth
bw)
· A fixed band width is used for all locations: may remove
detailed patterns. . .
spatial processes often have location dependent band widths.
(= future work)
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Option: Quad tree
unemployed_100m <- sdc_raster( dwellings[c("x","y")], dwellings$unemployed

, r = 100) # use a finer raster
unemployed_qt <- protect_quadtree(unemployed_100m)
plot(unemployed_qt)
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Option: Quad tree

Pro· Adapts to data density
· Adjusts until no sensitive data is left.

Cons· Visually: “Blocky” / “Mondrian-like” result.
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Publish: visual interpolation
So in 5 lines we create a visual attractive map that is safe:
unemployed <- sdc_raster(dwellings[c("x","y")], dwellings$unemployed, r=500)
unemployed_smoothed <- protect_smooth(unemployed, bw = 1500)
unemployed_safe <- remove_sensitive(unemployed_smoothed)
mean_unemployed <- mean(unemployed_safe)
raster::filledContour(mean_unemployed, main="Unemployment rate")
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The end

Thank you for your attention!

Questions?

Curious?
install.packages("sdcSpatial")

Feedback and suggestions?
https://github.com/edwindj/sdcSpatial/issues
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