### sdcSpatial: Privacy protected density maps

Edwin de Jonge @edwindjonge

Statistics Netherlands Research & Development @edwindjonge

useR! 2019, July 11 2019



## sdcSpatial: Privacy protected maps





## sdcSpatial: Privacy protected maps

#### Takeout message: sdcSpatial has methods for:

- **Creating** a **raster** map: sdc\_raster for pop density, value density and mean density, using the excellent raster package by Hijmans (2019).
- Finding out which locations are sensitive: plot\_sensitive, is\_sensitive.
- Adjusting raster map for **protecting data**: protect\_smooth, protect\_quadtree.
- Removing sensitive locations.



## Who am I and why sdcSpatial?

- Statistical consultant, Data Scientist @cbs.nl / Statistics NL
- Statistics Netherlands is producer main official statistics in the Netherlands:
  - Stats on Demographics, economy (GDP), education, environment, agriculture, Finance etc.
  - Part of the European Statistical System, ESS.

#### Motivation for sdcSpatial

 ESS has European Code of Statistical Practice (predates GDPR, European law on Data Protection): no individual information may be revealed.



## Sdc in sdcSpatial?

#### SDC = "Statistical Disclosure Control"

### Collection of statistical methods to:

- · Check if data is safe to be published
- Protect data by slightly altering (aggregated) data
  - $\ \, {\rm adding} \ \, {\rm noise}$
  - shifting mass
- Most SDC methods operate on records.
- sdcSpatial works upon locations.



### Data

data(dwellings, package="sdcSpatial")
nrow(dwellings)

## [1] 90603
head(dwellings) # consumption/unemployed are simulated!

| ## |   | x      | У      | consumption | unemployed |
|----|---|--------|--------|-------------|------------|
| ## | 1 | 149712 | 470104 | 2049.926    | FALSE      |
| ## | 2 | 149639 | 469906 | 1814.938    | FALSE      |
| ## | 3 | 149631 | 469888 | 2074.882    | FALSE      |
| ## | 4 | 149788 | 469831 | 1927.989    | FALSE      |
| ## | 5 | 149773 | 469834 | 2164.969    | FALSE      |
| ## | 6 | 149688 | 469898 | 1987.958    | FALSE      |



### Let's create a sdc\_raster

#### Creation: library(sdcSpatial) unemployed <- sdc\_raster( dwellings[c("x", "y")] # realistic locations , dwellings\$unemployed # simulated data! , r = 500 # raster resolution of 500m , min\_count = 10 # min support )

#### What has been created?

```
print(unemployed)
## logical sdc_raster object:
## resolution: 500 500 , max_risk: 0.95 , min_count: 10
## mean sensitivity score [0,1]: 0.4249471
```

42% of the data on this map is sensitive!



## What is sensitivity?

Binary score (logical) per raster cell indicating if it's unsafe to publish.

### Calculated:

- a) Per location  $(x_i, y_i)$  (raster cell)
- b) Using risk function disclosure\_risk  $r(x, y) \in [0, 1]$ . How accurate can an attacker estimate the value of an individual? If  $r(x_i, y_i) > \max\_risk$  then  $(x_i, y_i)$  is sensitive.
- c) Using a minimum number of observations. If  $count_i < min_count$ , then  $(x_i, y_i)$  is sensitive.



### **Disclosure risks**

### External (numeric)

$$r(x,y) = \max \frac{v_i}{\sum_{i \in (x,y)} v_i} \text{with } v_i \in \mathbb{R}$$

### Discrete (logical)

$$r(x,y) = \frac{1}{n} \sum_{i \in (x,y)} v_i \text{ with } v_i \in \{0,1\}$$



# Type of raster density maps:

(Stored in unemployed\$value):

Density can be area-based:

- number of people per square (\$count): population density.
- (total) value per square (\$sum): number of unemployed per square.
- Or density can population-based:
  - Mean value per square (\$mean): unemployment rate per square.

Note: All density types are valid, but (total) value per square strongly interacts with population density. (e.g. https://xkcd.com/1138).



## Plotting a sdc\_raster

plot(unemployed, "mean")



unemployed

sensitive



## How to reduce sensitivity?

### **Options:**

- a) Use a coarser raster: sdc\_raster.
- b) Apply spatial smoothing: protect\_smooth method by Wolf and Jonge (2018), Jonge and Wolf (2016).
- c) Aggregate sensitive cells hierarchically with a quad tree until not sensitive: protect\_quadtree method by Suñé et al. (2017).
- d) Remove sensitive locations: remove\_sensitive.



### **Option: coarser raster**

sensitive



unemployed\_1km



# **Option: Coarsening**

#### Pros

• Simple and easy explainable

### Cons

- Detailed spatial patterns are removed
- visually unattractive: "Blocky"



## **Option: KDE-smoothing**

unemployed\_smoothed <- protect\_smooth(unemployed, bw = 1500)
plot(unemployed\_smoothed, "mean")</pre>





# **Options: KDE-smoothing**

### Pro's

- Often enhances spatial pattern visualization, removing spatial noise.
- Makes it a density map and used as source for e.g. contour map.

### Con's

- Does not remove all sensitive values (depends on bandwidth bw)
- A fixed band width is used for all locations: may remove detailed patterns... spatial processes often have location dependent band widths. (= future work)



#### 





@edwindjonge #sdcSpatial

## **Option: Quad tree**

### Pro

- Adapts to data density
- Adjusts until no sensitive data is left.

#### Cons

• Visually: "Blocky" / "Mondrian-like" result.



### **Publish: visual interpolation**

So in 5 lines we create a visual attractive map that is safe: unemployed <- sdc\_raster(dwellings[c("x","y")], dwellings\$unemployed, r=500) unemployed\_smoothed <- protect\_smooth(unemployed, bw = 1500) unemployed\_safe <- remove\_sensitive(unemployed\_smoothed) mean\_unemployed <- mean(unemployed\_safe) raster::filledContour(mean\_unemployed, main="Unemployment rate")



Unemployment rate



Thank you for your attention!

**Questions?** 

Curious? install.packages("sdcSpatial")

**Feedback and suggestions?** https://github.com/edwindj/sdcSpatial/issues



### References

Hijmans, Robert J. 2019. *Raster: Geographic Data Analysis and Modeling*. https://CRAN.R-project.org/package=raster.

Jonge, Edwin de, and Peter-Paul de Wolf. 2016. "Spatial Smoothing and Statistical Disclosure Control." In *Privacy in Statistical Databases*, edited by Josep Domingo-Ferrer and Mirjana Pejić-Bach, 107–17. Springer.

Suñé, E., C. Rovira, D. Ibáñez, and M. Farré. 2017. "Statistical Disclosure Control on Visualising Geocoded Population Data Using Quadtrees."

http://nt17.pg2.at/data/x\_abstracts/x\_abstract\_286.docx.

Wolf, Peter-Paul de, and Edwin de Jonge. 2018. "Spatial Smoothing and Statistical Disclosure Control." In *Privacy in Statistical Databases - Psd 2018*, edited by Josep Domingo-Ferrer and Francisco Montes Suay. Springer.

