Multi-state Models and the Survival package

Terry Therneau

July 2019

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Changes

- survival 0.x: pre "white book": (1986 1989)
- survival 1.x: Splus era (1989 2004)
 - Second International S Conference, 1992, Toulouse

- survival 2.x: R (2004 2019)
- survival 3.x: on github 7/3, CRAN on 9/1?

Changes

- survival 0.x: pre "white book": (1986 1989)
- survival 1.x: Splus era (1989 2004)
 - Second International S Conference, 1992, Toulouse

- survival 2.x: R (2004 2019)
- survival 3.x: on github 7/3, CRAN on 9/1?
- Book: end of 2020

Why should you care?

I rarely change major versions – something must be up

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

701 packages depend on survival (as of 4 July)

Why should you care?

I rarely change major versions – something must be up

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 701 packages depend on survival (as of 4 July)
- Major increments in multi-state modeling
- Why multi-state?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

	id	trt	tstart	tstop	event
1	1	В	0	44	CR
2	1	В	44	113	relapse
3	1	В	113	235	death
4	2	A	0	200	SCT
5	2	A	200	286	death
6	3	A	0	38	CR
7	3	A	38	1983	censor

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Data

event is a multi-level factor variable.

- The first level must correspond to "no event at this time"
- Otherwise unrestricted.
- An id variable identifies multiple rows per subject.

Consistent

- If at risk, you should be some state: (0,50,T) (90, 210,M)
- But only one place at a time: (0,50,T) (30, 210,P)

	id	trt	tstart	tstop	event	e2
1	1	В	0	44	CR	-
2	1	В	44	113	relapse	Fail
3	1	В	113	235	death	-
4	2	A	0	200	SCT	SCT
5	2	A	200	286	death	Fail
6	3	A	0	38	CR	-
7	3	A	38	1983	censor	-

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

		n	nevent	rmean	<pre>std(rmean)*</pre>		
trt=A,	(s0)	759	0	527	47		
trt=B,	(s0)	821	0	651	49		
trt=A,	SCT	759	131	510	51		
trt=B,	SCT	821	134	569	52		
trt=A,	Fail	759	194	1382	59		
trt=B,	Fail	821	184	1198	58		
*mea	an tir	ne ir	n state,	resti	ricted (max time	= 2419)	
> plot(AJfit[, 2:3])							

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Multi-state coxph models

```
1:2 coef exp(coef) se(coef) robust se z p
trtB -0.18 0.84 0.12 0.12 -1.4 0.2
```

1:3 coef exp(coef) se(coef) robust se z p trtB -0.24 0.79 0.13 0.13 -1.9 0.06

2:3 coef exp(coef) se(coef) robust se z p trtB -0.30 0.74 0.18 0.18 -1.7 0.08

States: 1= (s0), 2= SCT, 3= Fail

Post coxph probability-in-state curves

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Goals

- Curves of P(state | t) are as easy as survfit
- Multi-state fits are as easy as coxph
- Secondary summaries E(time in state), E(visits to state), ...

- Standardized data —> better data tools
 - Cannot be in two places at once
 - If at risk, must be someplace
 - Gaps and teleports are viewed with suspicion
 - Don't make the user break the rules
 - Immortal time bias is pernicious.
- Robust variance (dfbeta matrix) for all estimates
 - Correct variance with IP weights
 - Variance of derived quantities
- These are the tools that I use.

Goals

- Curves of P(state | t) are as easy as survfit
- Multi-state fits are as easy as coxph
- Secondary summaries E(time in state), E(visits to state), ...

- Standardized data —> better data tools
 - Cannot be in two places at once
 - If at risk, must be someplace
 - Gaps and teleports are viewed with suspicion
 - Don't make the user break the rules
 - Immortal time bias is pernicious.
- Robust variance (dfbeta matrix) for all estimates
 - Correct variance with IP weights
 - Variance of derived quantities
- These are the tools that I use.
- Sunset the Fine-Gray

Goals

- Curves of P(state | t) are as easy as survfit
- Multi-state fits are as easy as coxph
- Secondary summaries E(time in state), E(visits to state), ...

- Standardized data —> better data tools
 - Cannot be in two places at once
 - If at risk, must be someplace
 - Gaps and teleports are viewed with suspicion
 - Don't make the user break the rules
 - Immortal time bias is pernicious.
- Robust variance (dfbeta matrix) for all estimates
 - Correct variance with IP weights
 - Variance of derived quantities
- These are the tools that I use.
- Sunset the Fine-Gray
- Don't bugger it up

Data check

```
> check <- survcheck(Surv(tstart, tstop, event) ~ 1,</pre>
                   data=mydata, id=id)
> check$transitions
        to
from
        CR SCT relapse death (censored)
  (s0) 443 106 13
                          55
                                    29
 CR.
         0 159 168 17
                                   110
 SCT 11 0 45 149
                                   158
 relapse 0 99
                       99
                                    28
                     0
 death 0 0
                     0
                         0
                                     0
> #
> check$flag
overlap
                  jump teleport
           gap
      \cap
              \cap
                      \cap
                               \cap
```

Complex multi-state coxph models

Yet to do

Nag level

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Yet to do

Nag level

- Unnamed state
 - ""
 ()
 (s0)
- Methods: [, coef, plot, print, quantile, anova, vcov, extractAIC, ...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- More tests
- Check 500 other packages
- Submit to CRAN

Hitchhiker's guide to survival

Causal estimates

- A very important aspect of time-to-event data
- Properties:
 - 1. Prediction can be verified
 - P(alive at 2 years) = 27%
 - I can watch you for 2 years and find out
 - 2. Prediction is additive over subjects
 - $p_1 = .27, p_2 = .83, p_3 = \dots$
 - population prediction = $(1/n) \sum p$
 - 3. The HR does not satisfy this, P(state) does.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

► The HR does not satisfy this, P(state) does.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○