geotopbricks

An R Package for the Distributed Hydrological Model GEOtop

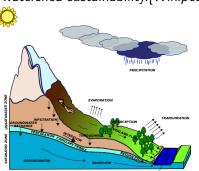
Emanuele Cordano (Rendena100)

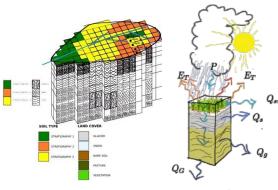
github.com/ecor

Giacomo Bertoldi , Elisa Bortoli (EURAC Ecohydro)

github.com/Ecohydro

Who are we?


- Environmental engineers with hydrological background (more deterministic and physically-based than statics!)
- ➤ Some of us are researchers, other are self-employed and freelancers www.rendena100.eu . Some of us are authors of several R-packages and R enthusiast.
- ➤ Some of us are developers of GEOtop hydrologic models with skills in hydrology, environmental science and also in C/C++, parallell programming, High Perfomance Computing, etc.


Hydrology

Scientific study of the movement, distribution, and quality of water, including the water cycle, water resources and environmental watershed sustainability. [Wikipedia]

Hydrological Models

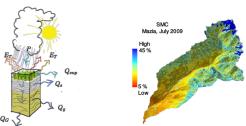
Models that estimate water river discharge, soil water content, evapotranspiration, etc. $Q_{\text{sup}}(output)$ in function of weather forcings and soil/land/geomorpho-

logical characterization

(input).

Soil water mass balance equation: $\frac{\partial \theta}{\partial t} = \nabla \cdot [K(\nabla(\psi + z_f))] + S$

Soil Heat (energy) balance equation: $C_s \frac{\partial T_s}{\partial t} = \nabla \cdot [K_t(\nabla T_s)] + \lambda S$



GEOtop Hydrological Model

GEOtop hydrological model solves water mass balance and energy balance equations coupled with the exchanges between terrain and lower atmoshere in the following two setup configurations:

- ▶ 1D: only vertical fluxes \rightarrow balances at local scale (only in one soil column)
- ▶ 3D: vertical and lateral fluxes \rightarrow balances at basin scale

GEOtop Hydrological Model Software Package / Source Code

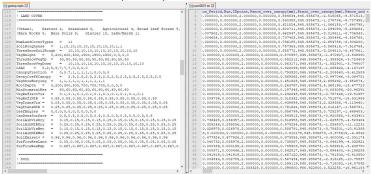
GEOtop Hydrological Model is an open source software package (GPL3 licence):

- ▶ written in C/C++
- ▶ released in 2014 (version 2.0) as free open-source project, a re-engineering process is going to finish (version 3.0);
- scientifically tested and published;

Source code and documentation are available on GitHub repository: http://geotopmodel.github.io/geotop/.

@AGU PUBLICATIONS

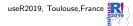
RESEARCH ARTICLE 10.1002/2016WR019191 The integrated hydrologic model intercomparison project, IH-MIP2: A second set of benchmark results to diagnose integrated hydrology and feedbacks



Ciarana Bartaldi (07 Februari Cara (08 Februaria) Cardana 79 States a Fadricai 10 Februari Viliana 8

geotopbricks R Package: Why?

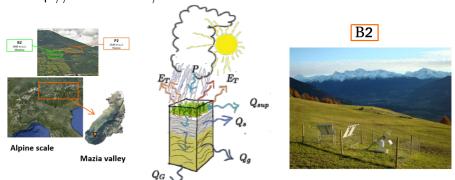
- complexity in input/output/configuration files ("frontend") and data difficult to handle
- ▶ need of user friendly environment for to GEOtop data tidying and data analytics (e.g. R)



GEOtop Simulation Configuration File (geotop.inpts)

GEOtop simulation is a directory containing a configuration file, called **geotop.inpts** filled with a keywords system addressing to simulation options (e.g. simulation period); **input files** (e.g. meteorological forcings, soil and geomorphology of the basin); **output files** (spatio-temporal maps - raster and time series - of the results).

```
InitDateDDMMYYYYhhmm=09/04/2014 18:00
EndDateDDMMYYYYhhmm =01/01/2016 00:00
[...]
MeteoFile ="meteoB2_irr"
PointOutputFile ="tabs/point"
```

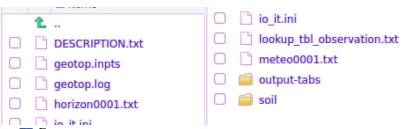


geotopbricks R Package: What it Does

The aim of **geotopbricks**, starting in 2013, is to import all GEOtop simulation data into the **R** environment by using the *keyword-value* syntax of *geotop.inpts*. **geotopbricks** does the following actions:

- parsing geotop.inpts configuration file;
- deriving from geotop.inpts's keywords the source files of I/O data;
- ▶ importing time series (e.g. precipitation, temperature, soil water content, snow) as zoo or data.frame objects;
- ▶ importing spatially and spatio-temporal gridded objects as RasterLayer-class or RasterBrick-class objects (raster package).

1D GEOtop Simulation in an Alpine Site: 2 **Points**

Estimation of soil water content (SWC) in two points P2 and B2 located in Val Mazia/Matsch, South Tyrol, Italy http://lter.eurac.edu/en.

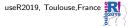


1D GEOtop Simulation in an Alpine Site: B2

Here is the directory containing files of B2 point simulation:

```
library(geotopbricks)

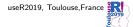
## SET GEOTOP SIMULATION DIRECTORY
wpath_B2 <- "resources/simulation/Matsch_B2_Ref_007"</pre>
```



Getting Simulation Input Data

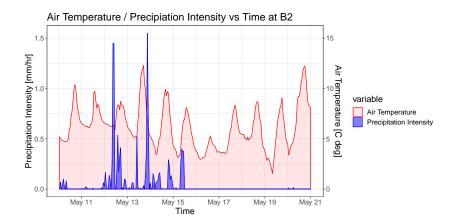
Meteorological forcings time series are imported and saved as **meteo** variable (class **zoo**). This variable is retrieved through the GEOtop keyword **MeteoFile**:

```
tz <- "Etc/GMT-1"
meteo <- get.geotop.inpts.keyword.value(
   "MeteoFile",
   wpath=wpath_B2,
   data.frame=TRUE,
   tz=tz)
class(meteo)</pre>
```

```
## [1] "zoo"
```



Getting Simulation Input Data (verify)

Meteorological time series once imported can be printed:

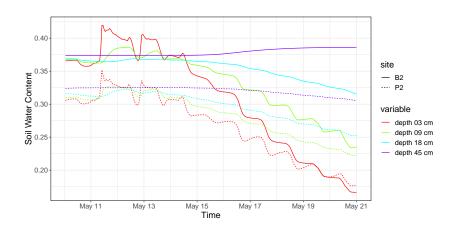

```
head(meteo[12:14,c("Iprec","AirT","Swglobal")])
```

```
head(meteo[12:14,c("RelHum","WindSp","WindDir")])
```


Precipitation and Air Temperature at B2

Getting Simulation Output Data

Soil Water Content Profile:


```
tz <- "Etc/GMT-1"
SWC_B2 <- get.geotop.inpts.keyword.value(
  "SoilLigContentProfileFile",
  wpath = wpath B2,
  data.frame = TRUE.
  date field = "Date12.DDMMYYYYhhmm.",
 tz = tz.
  zlayer.formatter = "z%04d"
help(get.geotop.inpts.keyword.value) ## for more details!
```

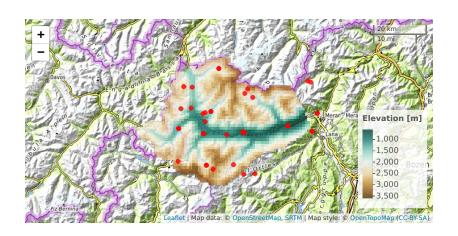
Getting Simulation Output Data (at P2)

Analogously for P2:

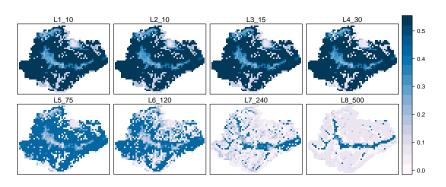
```
wpath_P2 <- "resources/simulation/Matsch_P2_Ref_007"
SWC_P2 <- get.geotop.inpts.keyword.value(
    "SoilLiqContentProfileFile",
    wpath = wpath_P2,
    data.frame = TRUE,
    date_field = "Date12.DDMMYYYYhhmm.",
    tz = "Etc/GMT-1",
    zlayer.formatter = "z%04d")</pre>
```

Soil Water Content at P2 and B2

3D Spatially Distributed Simulation: Val Venosta/Vinschgau - Upper Adige River Basin - Alps - I/CH/A

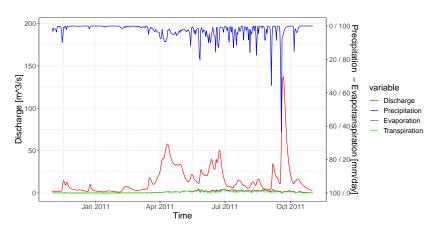

```
## dimensions : 48, 63, 3024 (nrow, ncol, ncell)
## resolution : 1000, 1000 (x, y)
## extent : 598000, 661000, 5145000, 5193000 (xmin, ref. : +proj=utm +zone=32 +ellps=WGS84 +datum=WGS
```

data source : in memory
names : layer

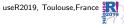

class : RasterLayer

Input GeoSpatial Map: Elevation and Weather Station

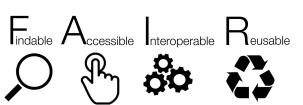
3D Spatially Distributed Simulation (Output Geospatial Map): Soil Water Content



brickFromOutputSoil3DTensor("SoilLiqContentTensorFile",
wpath=wpath 3D,when="2011-08-16 12:00:00 +01")



3D Spatially Distributed Simulation (Output Geospatial Map): Surface Water Discharge at the Outlet



Discussion

- geotopbricks allows graphical representation using R of GEOtop results, useful for hydrologigists and reaserchers;
- ➤ Through **geotopbricks** user can interact between R and GEOtop using R environment and GEOtop keywords system, without using the GEOtop simulation structure.
- Processing of a GEOtop simulation is always reproducible for any other simulation; results can be automatically documented in reports or presentations.

Conclusions and Way Forward

- geotopbricks is an interface of GEOtop in R speaking the language of GEOtop;
- R code based on geotopbricks can help the implementation of further package or apps: analityics, model calibration, visualization.
- Open Source (and not only) Hydrological Model needs powerful interfaces to process I/O in a FAIR way;

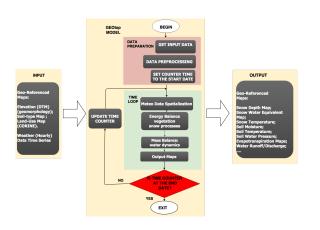
Finally

Aknowledgements to

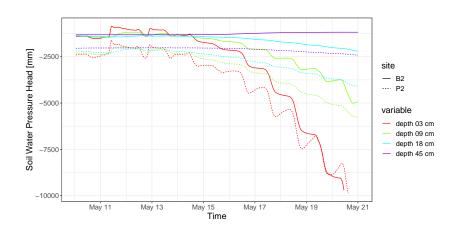
- all GEOtop developers and users' group, in particular Matteo Dall'Amico, Stefano Cozzini, Alberto Sartori, Stefano Endrizzi, Samuel Senoner, Riccardo Rigon, who provided images about GEOtop for this presentation
- ▶ the community of R whose packages allow to analize and visualise GEOtop data.

If intertested? See and follow us on (www.geotop.org) or (https://cran.r-project.org/package=geotopbricks)

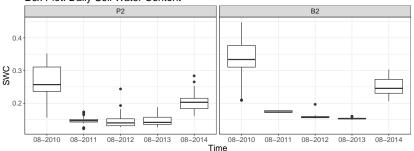
Thank you for your attention! / Merci pour votre attention! Find us as **@ecor** (presenter) or **@EURAC-Ecohydro** (co-authors) on *GitHub*.



Addendum



GEOtop Hydrological Model Flowchart


- Input: meteo data, elevations, soil parameters,...
- Output: snow cover, soil temperature, soil moisture,...

Soil Water Pressure Head at P2 and B2

Example of an Output Data Analytics (Soil Moisture Distribution)

Distribution of daily aggregated soil water contant at a 18 cm depth: Box Plot: Daily Soil Water Content

More details on the eRum2018 poster.

