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Data: Blocks

There are more and more situations where users have to deal
with several blocks of variables
• Datasets repeated in time or space
• Different sources of measurements to characterize the

same observations
• In sensory analysis: Projective mapping/Napping, Free

choice profiling, Check-All-That-Apply
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Package ClustBlock on CRAN
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Cluster analysis of blocks of variables

The CLUSTATIS method: Clustering of blocks of quantitative
variables decribing the same observations but variables may be

different from one block to another

• Test to know if there is more than one cluster
• Recommended number of clusters
• Indices to assess homogeneity of clusters
• Possibility to introduce a noise cluster
• Graphical representations
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Criterion of CLUSTATIS

Wi the scalar product matrix of the dataset i , W(k) the
compromise of the cluster k , m the number of blocks and K the

number of clusters

Minimization of:
D = ∑

K
k=1 ∑i∈Gk

||Wi−α
(k)
i W(k)||2

Equivalent to the maximization of:
Q = ∑

K
k=1 ∑i∈Gk

RV2(Wi,W(k))

If K = 1, D = ∑
m
i=1 ||Wi−αiW||2 =⇒ STATIS method (multiblock

data analysis)
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Solutions

• Hierarchical clustering algorithm
−→ At each step, the smallest increase of D is taken

• Partitioning algorithm
−→ At each iteration, aggregating each dataset

with the nearest compromise (RV coefficient)
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Help with the number of clusters

• Permutation test to know if there is more than one cluster
• Recommended number of clusters computed by an

adaptation of the Hartigan index
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Introduction of a noise cluster
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Introduction of a noise cluster: Modification of the
criterion

Q = ∑
m
i=1 ∑

K
k=1(δikRV2(Wi,W(k))+δi(K+1)ρ

2)

=⇒ Partitioning algorithm

−→ At each iteration, aggregating each dataset with
the nearest compromise (RV coefficient) or to the noise cluster
if the similarity with every compromises is lower than ρ

(automatically computed)
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Datasets

−→ Projective mapping of smoothies

−→ Concern 8 smoothies and 24 subjects (datasets)

Francois Husson, Sebastien Le and Marine Cadoret (2017). SensoMineR: Sensory Data Analysis. R package
version 1.23. https://CRAN.R-project.org/package=SensoMineR
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Example of Data Blocks: Projective mapping/Napping

X Y
Immedia_MP 23.50 23.50

Carrefour_MP 39.50 21.00
Immedia_SRB 37.50 25.50

Casino_SRB 41.00 24.00
Innocent_PBC 24.00 18.50

Casino_PBC 25.00 17.00
Innocent_SB 23.80 22.50

Carrefour_SB 25.00 23.80

Francois Husson, Sebastien Le and Marine Cadoret (2017). SensoMineR: Sensory Data Analysis. R package
version 1.23. https://CRAN.R-project.org/package=SensoMineR
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Results
−→ The test indicates that clustering is not necessary

−→We can only perform the STATIS method

res . s t a t i s = s t a t i s ( Data=smoo , Blocks=rep (2 , 24 ) )
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Other graphics
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Other graphics

p l o t ( res . s t a t i s )
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Datasets

−→ Projective mapping of yoghurts

−→ Concern 12 yoghurts and 100 subjects (datasets)

Berget, I., Varela, P., & Næs, T. (2019). Segmentation in projective mapping. Food Quality and Preference, 71, 8-20.
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Application of CLUSTATIS
res . c l u s t a t i s = c l u s t a t i s ( Data , Blocks = rep (2 ,100) ,

No ise_c lus te r = TRUE)

The test indicates that clustering is necessary

Segmentation in 4 clusters 20 / 26
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Other help for the choice of the number of clusters
p l o t ( res . c l u s t a t i s )
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Homogeneity indices
summary ( res . c l u s t a t i s )

Homogeneity

Cluster Homogeneity # Subjects
1 47.3% 33
2 46.4% 10
3 42.7% 15
4 51.2% 14

Noise cluster 21.9% 28
Overall homogeneity 47.0% 72

One group 24.3% 100

• Indices of homogeneity for all the clusters, overall and with
no clustering
• Subjects who do not fit any cluster are put in an additional

cluster
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Graphical representations

p l o t ( res . c l u s t a t i s , ngroups =4)
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Conclusion

• ClustBlock contains clustering methods for multiblock
datasets
• Several indices to assess the quality of the cluster solution
• Possibility to discard atypical datasets
• Help for the choice of the number of clusters
• Analysis of each cluster with graphical representations
• Possibility of analysis without clustering
• Multi-start procedures are also available
• Specific methods for CATA and Free Sorting data
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