Cluster analysis of blocks of variables

Examples 00000000000 Conclusion

ClustBlock: A package for clustering datasets

Fabien Llobell, Évelyne Vigneau, Véronique Cariou, El Mostafa Qannari

École Nationale Nantes Atlantique Vétérinaire, Agroalimentaire et de l'Alimentation

useR! 2019

Cluster analysis of blocks of variables

Examples 00000000000 Conclusion

Data: Blocks

Cluster analysis of blocks of variables

Examples

Conclusion

K clusters of blocks

Cluster analysis of blocks of variables

Examples 00000000000 Conclusion

Data: Blocks

There are more and more situations where users have to deal with several blocks of variables

- Datasets repeated in time or space
- Different sources of measurements to characterize the same observations
- In sensory analysis: Projective mapping/Napping, Free choice profiling, Check-All-That-Apply

Cluster analysis of blocks of variables

Examples 00000000000 Conclusion

Package ClustBlock on CRAN

Cluster analysis of blocks of variables

Examples 00000000000 Conclusion

Introduction

Cluster analysis of blocks of variables

Examples

Conclusion

Cluster analysis of blocks of variables

Examples 00000000000 Conclusion

Cluster analysis of blocks of variables

The CLUSTATIS method: Clustering of blocks of quantitative variables decribing the same observations but variables may be different from one block to another

- Test to know if there is more than one cluster
- Recommended number of clusters
- Indices to assess homogeneity of clusters
- Possibility to introduce a noise cluster
- Graphical representations

Cluster analysis of blocks of variables

Examples 00000000000 Conclusion

Criterion of CLUSTATIS

 W_i the scalar product matrix of the dataset *i*, $W^{(k)}$ the compromise of the cluster *k*, *m* the number of blocks and *K* the number of clusters

Minimization of:

$$\mathbf{D} = \sum_{k=1}^{K} \sum_{i \in \mathbf{G}_{k}} ||\mathbf{W}_{i} - \alpha_{i}^{(k)} \mathbf{W}^{(k)}||^{2}$$

Equivalent to the maximization of: $\label{eq:Q} \mathbf{Q} = \sum_{k=1}^{K} \sum_{i \in G_k} RV^2(W_i, W^{(k)})$

If K = 1, $\mathbf{D} = \sum_{i=1}^{m} ||\mathbf{W}_i - \alpha_i \mathbf{W}||^2 \implies$ STATIS method (multiblock data analysis)

Cluster analysis of blocks of variables

Examples

Conclusion

Solutions

• Hierarchical clustering algorithm

 \longrightarrow At each step, the smallest increase of D is taken

Partitioning algorithm

 \longrightarrow At each iteration, aggregating each dataset with the nearest compromise (RV coefficient)

Cluster analysis of blocks of variables

Examples 00000000000 Conclusion

Help with the number of clusters

- Permutation test to know if there is more than one cluster
- Recommended number of clusters computed by an adaptation of the Hartigan index

Cluster analysis of blocks of variables

Examples 00000000000 Conclusion

Introduction of a noise cluster

Cluster analysis of blocks of variables

Examples 0000000000

Introduction of a noise cluster: Modification of the criterion

$$\mathbf{Q} = \sum_{i=1}^{m} \sum_{k=1}^{K} (\delta_{ik} \mathbf{RV}^2(\mathbf{W}_i, \mathbf{W}^{(k)}) + \delta_{i(\mathbf{K}+1)} \rho^2)$$

 \implies Partitioning algorithm

 \longrightarrow At each iteration, aggregating each dataset with the nearest compromise (RV coefficient) or to the noise cluster if the similarity with every compromises is lower than ρ (automatically computed)

Cluster analysis of blocks of variables

Examples •0000000000 Conclusion

Introduction

Cluster analysis of blocks of variables

Examples

Conclusion

Cluster analysis of blocks of variables

Examples 0000000000 Conclusion

Datasets

- \longrightarrow Projective mapping of smoothies
- \longrightarrow Concern 8 smoothies and 24 subjects (datasets)

Francois Husson, Sebastien Le and Marine Cadoret (2017). SensoMineR: Sensory Data Analysis. R package version 1.23. https://CRAN.R-project.org/package=SensoMineR

Cluster analysis of blocks of variables

Examples

Conclusion

Example of Data Blocks: Projective mapping/Napping

Subject example

	x-axis	
	Х	Y
Immedia_MP	23.50	23.50
Carrefour_MP	39.50	21.00
Immedia_SRB	37.50	25.50
Casino_SRB	41.00	24.00
Innocent_PBC	24.00	18.50
Casino_PBC	25.00	17.00
Innocent_SB	23.80	22.50
Carrefour_SB	25.00	23.80

Francois Husson, Sebastien Le and Marine Cadoret (2017). SensoMineR: Sensory Data Analysis. R package version 1.23. https://CRAN.R-project.org/package=SensoMineR

Cluster analysis of blocks of variables

Examples

Conclusion

Results

\longrightarrow The test indicates that clustering is not necessary

 \longrightarrow We can only perform the STATIS method

res.statis=statis(Data=smoo, Blocks=rep(2,24))

Cluster analysis of blocks of variables

Examples

Conclusion

Other graphics

Cluster analysis of blocks of variables

Examples

Conclusion

Other graphics

plot(res.statis)

Weights

Cluster analysis of blocks of variables

Examples 000000000000 Conclusion

Datasets

- \longrightarrow Projective mapping of yoghurts
- \longrightarrow Concern 12 yoghurts and 100 subjects (datasets)

Berget, I., Varela, P., & Næs, T. (2019). Segmentation in projective mapping. Food Quality and Preference, 71, 8-20.

Cluster analysis of blocks of variables

Examples

Conclusion

Application of CLUSTATIS

res.clustatis=clustatis(Data, Blocks = rep(2,100), Noise_cluster = TRUE)

The test indicates that clustering is necessary

CLUSTATIS Dengrogram

Cluster analysis of blocks of variables

Examples

Conclusion

Other help for the choice of the number of clusters plot(res.clustatis)

Variation of criterion after consolidation

Cluster analysis of blocks of variables

Examples 00000000000 Conclusion

Homogeneity indices

summary(res.clustatis)

Homogeneity

Cluster	Homogeneity	# Subjects
1	47.3%	33
2	46.4%	10
3	42.7%	15
4	51.2%	14
Noise cluster	21.9%	28
Overall homogeneity	47.0%	72
One group	24.3%	100

- Indices of homogeneity for all the clusters, overall and with no clustering
- Subjects who do not fit any cluster are put in an additional cluster

Cluster analysis of blocks of variables

Examples

Conclusion

Graphical representations

plot(res.clustatis, ngroups=4)

Cluster analysis of blocks of variables

Examples 0000000000000 Conclusion •oo

Introduction

Cluster analysis of blocks of variables

Examples

Conclusion

Cluster analysis of blocks of variables

Examples 00000000000 Conclusion

Conclusion

- ClustBlock contains clustering methods for multiblock datasets
- Several indices to assess the quality of the cluster solution
- Possibility to discard atypical datasets
- Help for the choice of the number of clusters
- Analysis of each cluster with graphical representations
- Possibility of analysis without clustering
- Multi-start procedures are also available
- Specific methods for CATA and Free Sorting data

Examples

Conclusion

References

- Fabien Llobell (2019). ClustBlock: Clustering of Datasets. R package version 2.0.0.
- Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2018). Analysis and clustering of multiblock datasets by means of the STATIS and CLUSTATIS methods. Application to sensometrics. Food Quality and Preference.
- Llobell, F., Vigneau, E., & Qannari, E. M. (2019). Clustering datasets by means of CLUSTATIS with identification of atypical datasets. Application to sensometrics. Food Quality and Preference, 75, 97-104.
- Llobell, F., Cariou, V., Vigneau, E., Labenne, A., Qannari, E. M. (2019). A new approach for the analysis of data and the clustering of subjects in a CATA experiment. Food Quality and Preference, 72, 31-39.
- Llobell, F., Giacalone, D., Labenne, A., Qannari, E.M. (2019). Assessment of the agreement and cluster analysis of the respondents in a CATA experiment. Food Quality and Preference, 77, 184-190.