
compboost

Fast and Flexible Component-Wise Boosting Framework

Daniel Schalk, Janek Thomas, and Bernd Bischl

July 12, 2019

LMU Munich

Working Group Computational Statistics

Use-Case

The Situation

• We own a small booth at the city center that sells beer.

• As we are very interested in our customers’ health, we only sell to

customers who we expect to drink less than 110 liters per year.

• To estimate how much a customer drinks, we have collected data

from 200 customers in recent years.

• The data includes the beer consumption (in liter), age, sex, country

of origin, weight, body size, and 200 characteristics gained from app

usage (that have absolutely no influence).

Use-Case Daniel Schalk, Janek Thomas, and Bernd Bischl 1/17

Overview of the Data

beer consumption gender country age weight height app usage1 ... app usage200

106.5 m Seychelles 33 87.17 172.9 0.1680 ... 0.1313

85.5 f Seychelles 52 89.38 200.4 0.8075 ... 0.6087

116.5 f Czechia 54 92.03 178.7 0.3849 ... 0.5786

67.0 m Australia 32 63.53 186.3 0.3277 ... 0.3594

43.0 f Australia 51 64.73 175.0 0.6021 ... 0.7406

85.0 m Austria 43 95.74 173.2 0.6044 ... 0.4181

79.0 f Austria 55 87.65 156.3 0.1246 ... 0.4398

107.0 f Austria 24 93.17 161.4 0.2946 ... 0.6130

57.0 m USA 55 76.27 182.5 0.5776 ... 0.4927

89.0 m USA 16 72.21 203.3 0.6310 ... 0.0735

Use-Case Daniel Schalk, Janek Thomas, and Bernd Bischl 2/17

Our Goals

With this data we want to answer the following questions:

• Which of the customers’ characteristics are important to be able to

determine the consumption?

• How does the effect of important features look like?

• How does the model behave on unseen data?

Use-Case Daniel Schalk, Janek Thomas, and Bernd Bischl 3/17

What is Component-Wise

Boosting?

General Idea

• Sequential fitting of the base-learner b1, b2, b3 on the error /

pseudo-residuals of the current ensemble.

• The base-learner with the best fit on the error (measured as mean

squared error) is added to the ensemble.

• Results in a weighted sum / additive model over base-learners.

What is Component-Wise Boosting? Daniel Schalk, Janek Thomas, and Bernd Bischl 4/17

Advantages of Component-Wise Boosting

• Inherent (unbiased) feature selection.

• Resulting model is sparse since important effects are selected first

and therefore it is able to learn in high-dimensional feature spaces

(p � n).

• Parameters are updated iteratively. Therefore, the whole trace of

how the model evolves is available.

What is Component-Wise Boosting? Daniel Schalk, Janek Thomas, and Bernd Bischl 5/17

Base-Learner Paths

0.181

0.144

0.126

0.1255

0.03

0.00

0.05

0.10

0.15

0 500 1000 1500 2000
Iteration

R
el

at
iv

e
F

re
qu

en
cy

of

 In
cl

ud
ed

 B
as

e−
Le

ar
ne

r

Top 5 Base−Learner

a

a

a

a

a

age_spline

app_usage70_spline

country_Australia_category

country_Czechia_category

country_USA_category

What is Component-Wise Boosting? Daniel Schalk, Janek Thomas, and Bernd Bischl 6/17

About Compboost

Current Standard

Most popular package for model-based boosting is mboost:

• Large number of available base-learner and losses.

• Extended to more complex problems:

• Functional data

• GAMLSS models

• Survival analysis

• Extendible with custom base-learner and losses.

So, why another boosting implementation?

• Main parts of mboost are written in R and gets slow for large

datasets.

• Complex implementation:

• Nested scopes

• Mixture of different R class systems

About Compboost Daniel Schalk, Janek Thomas, and Bernd Bischl 7/17

About Compboost

Fast and flexible framework for model-based boosting:

• With mboost as standard, we want to keep the modular principle of

defining custom base-learner and losses.

• Completely written in C++ and exposed by Rcpp to obtain high

performance and full memory control.

• R API is written in R6 to provide convenient wrapper.

• Major parts of the compboost functionality are unit tested against

mboost to ensure correctness.

About Compboost Daniel Schalk, Janek Thomas, and Bernd Bischl 8/17

Small Demonstration

Starting With Convenience Wrapper

boostLinear() and boostSplines() automatically add univariate

linear models or a GAM for all features.

set.seed(618)

cboost = boostSplines(data = beer_data, target = "beer_consumption",

loss = LossAbsolute$new(), learning_rate = 0.1, iterations = 5000L,

penalty = 10, oob_fraction = 0.3, trace = 2500L)

1/5000 risk = 24 oob_risk = 24

2500/5000 risk = 0.6 oob_risk = 8.3

5000/5000 risk = 0.44 oob_risk = 8.3

##

##

Train 5000 iterations in 11 Seconds.

Final risk based on the train set: 0.44

Small Demonstration Daniel Schalk, Janek Thomas, and Bernd Bischl 9/17

Visualizing the Results

gg1 = cboost$plotInbagVsOobRisk()

gg2 = cboost$plotFeatureImportance()

0

5

10

15

20

25

0 1000 2000 3000 4000 5000
Iteration

R
is

k

type

inbag

oob

app_usage103_spline

app_usage97_spline

app_usage118_spline

app_usage171_spline

country_Seychelles_category

app_usage181_spline

app_usage158_spline

app_usage125_spline

app_usage81_spline

app_usage70_spline

country_Australia_category

country_USA_category

age_spline

country_Czechia_category

app_usage106_spline

0 1 2 3 4
Importance

Small Demonstration Daniel Schalk, Janek Thomas, and Bernd Bischl 10/17

Visualizing the Results

cboost$train(2000L)

gg1 = cboost$plotFeatureImportance()

gg2 = cboost$plot("age_spline", iters = c(50, 100, 500, 1000, 2000, 4000))

app_usage99_spline

app_usage95_spline

app_usage97_spline

app_usage103_spline

app_usage118_spline

app_usage171_spline

country_Seychelles_category

app_usage181_spline

app_usage158_spline

app_usage81_spline

app_usage70_spline

country_Australia_category

country_USA_category

age_spline

country_Czechia_category

0 1 2 3 4
Importance

−10

0

10

20

30

20 30 40 50 60 70
age

A
dd

iti
ve

 C
on

tr
ib

ut
io

n iteration

50

100

500

1000

2000

4000

Additive contribution of predictor
Effect of age_spline

Small Demonstration Daniel Schalk, Janek Thomas, and Bernd Bischl 11/17

Using the R6 Interface

cboost = Compboost$new(data = beer_data, target = "beer_consumption",

loss = LossQuantile$new(0.9), learning_rate = 0.1, oob_fraction = 0.3)

cboost$addBaselearner("age", "spline", BaselearnerPSpline)

cboost$addBaselearner("country", "category", BaselearnerPolynomial)

cboost$addLogger(logger = LoggerTime, use_as_stopper = TRUE, logger_id = "time",

max_time = 2e5, time_unit = "microseconds")

cboost$train(10000, trace = 500)

1/10000 risk = 11 oob_risk = 10 time = 0

500/10000 risk = 7.9 oob_risk = 8.2 time = 22107

1000/10000 risk = 6.3 oob_risk = 6.6 time = 46764

1500/10000 risk = 5.1 oob_risk = 5.4 time = 76091

2000/10000 risk = 4.2 oob_risk = 4.5 time = 112149

2500/10000 risk = 3.5 oob_risk = 3.8 time = 154647

##

##

Train 2978 iterations in 0 Seconds.

Final risk based on the train set: 3.2

Small Demonstration Daniel Schalk, Janek Thomas, and Bernd Bischl 12/17

Overview of the Functionality

• Base-learner: BaselearnerPolynomial, BaselearnerSpline,

BaselearnerCustom, and BaselearnerCustomCpp

• Loss functions: LossQuadratic, LossAbsolute, LossQuantile,

LossHuber, LossBinomial, LossCustom, and LossCustomCpp

• Logger/Stopper: LoggerIteration, LoggerInbagRisk,

LoggerOobRisk, and LoggerTime

→ Performance-based early stopping can be applied using the

LoggerOobRisk and specifying the relative improvement that should

be reached (e.g. 0 for stopping when out of bag risk starts to

increase).

Small Demonstration Daniel Schalk, Janek Thomas, and Bernd Bischl 13/17

Performance Considerations

Performance Considerations

• Optimizer are parallelized via openmp:

●

●●

●

●●

2

4

6

1 2 4 8 16
Number of Threads

S
pe

ed
up

(c
om

pa
re

d
to

 o
ne

 th
re

ad
)

• Take advantage of the matrix structure to speed up the algorithm by

reducing the number of repetitive or too expensive calculations.

• Matrices are stored (if possible) as a sparse matrix.

Performance Considerations Daniel Schalk, Janek Thomas, and Bernd Bischl 14/17

Small Comparison With Mboost

• Runtime (in minutes):

nrows / ncols mboost compboost
compboost

(16 threads)

20000 / 200 21.10 (1) 10.47 (2.02) 0.95 (22.21)

20000 / 2000 216.70 (1) 83.95 (2.58) 8.15 (26.59)

• Memory (in GB):

nrows / ncols mboost compboost
compboost

(16 threads)

20000 / 200 1.04 (1) 0.28 (3.71) 0.30 (3.47)

20000 / 2000 8.70 (1) 2.60 (3.35) 2.98 (2.92)

(Comparison was made by just using spline base-learner with 20 knots

and 5000 iterations. The numbers in the brackets are the relative values

compared to mboost.)

Performance Considerations Daniel Schalk, Janek Thomas, and Bernd Bischl 15/17

What’s Next?

What’s Next?

• Research on computational aspects of the algorithm:

• More stable base-learner selection process via resampling

• Base-learner selection for arbitrary performance measures

• Smarter and faster optimizers

• Greater functionality:

• Functional data structures and loss functions

• Unbiased feature selection

• Effect decomposition into constant, linear, and non-linear

• Reducing the memory load by applying binning on numerical

features.

• Adding hyperparameter tuning by providing a mlr (mlr3) learner

API.

• Exposing C++ classes to python.

What’s Next? Daniel Schalk, Janek Thomas, and Bernd Bischl 16/17

• Slides are available at:

www.github.com/schalkdaniel/talk compboost useR

• Actively developed on GitHub:

www.github.com/schalkdaniel/compboost

• Project page:

www.compboost.org

• JOSS DOI:

10.21105/joss.00967

What’s Next? Daniel Schalk, Janek Thomas, and Bernd Bischl 17/17

www.github.com/schalkdaniel/talk_compboost_useR
www.github.com/schalkdaniel/compboost
www.compboost.org
https://joss.theoj.org/papers/94cfdbbfdfc8796c5bdb1a74ee59fcda

	Use-Case
	What is Component-Wise Boosting?
	About Compboost
	Small Demonstration
	Performance Considerations
	What's Next?

