## compboost

Fast and Flexible Component-Wise Boosting Framework

4.00

#### Daniel Schalk, Janek Thomas, and Bernd Bischl

July 12, 2019

LMU Munich Working Group Computational Statistics

# **Use-Case**

- We own a small booth at the city center that sells beer.
- As we are very interested in our customers' health, we only sell to customers who we expect to drink less than 110 liters per year.
- To estimate how much a customer drinks, we have collected data from 200 customers in recent years.
- The data includes the beer consumption (in liter), age, sex, country of origin, weight, body size, and 200 characteristics gained from app usage (that have absolutely no influence).

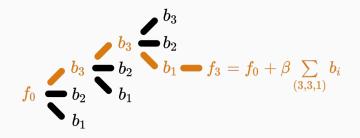
| beer_consumption | gender | country    | age | weight | height | app_usage1 | <br>app_usage200 |
|------------------|--------|------------|-----|--------|--------|------------|------------------|
| 106.5            | m      | Seychelles | 33  | 87.17  | 172.9  | 0.1680     | <br>0.1313       |
| 85.5             | f      | Seychelles | 52  | 89.38  | 200.4  | 0.8075     | <br>0.6087       |
| 116.5            | f      | Czechia    | 54  | 92.03  | 178.7  | 0.3849     | <br>0.5786       |
| 67.0             | m      | Australia  | 32  | 63.53  | 186.3  | 0.3277     | <br>0.3594       |
| 43.0             | f      | Australia  | 51  | 64.73  | 175.0  | 0.6021     | <br>0.7406       |
| 85.0             | m      | Austria    | 43  | 95.74  | 173.2  | 0.6044     | <br>0.4181       |
| 79.0             | f      | Austria    | 55  | 87.65  | 156.3  | 0.1246     | <br>0.4398       |
| 107.0            | f      | Austria    | 24  | 93.17  | 161.4  | 0.2946     | <br>0.6130       |
| 57.0             | m      | USA        | 55  | 76.27  | 182.5  | 0.5776     | <br>0.4927       |
| 89.0             | m      | USA        | 16  | 72.21  | 203.3  | 0.6310     | <br>0.0735       |

With this data we want to answer the following questions:

- Which of the customers' characteristics are important to be able to determine the consumption?
- How does the effect of important features look like?
- How does the model behave on unseen data?

# What is Component-Wise Boosting?

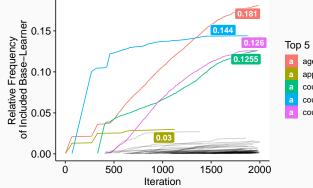
#### **General Idea**



- Sequential fitting of the base-learner  $b_1, b_2, b_3$  on the error / pseudo-residuals of the current ensemble.
- The base-learner with the best fit on the error (measured as mean squared error) is added to the ensemble.
- Results in a weighted sum / additive model over base-learners.

- Inherent (unbiased) feature selection.
- Resulting model is sparse since important effects are selected first and therefore it is able to learn in high-dimensional feature spaces  $(p \gg n)$ .
- Parameters are updated iteratively. Therefore, the whole trace of how the model evolves is available.

#### **Base-Learner Paths**



#### Top 5 Base-Learner

a age\_spline

- a app\_usage70\_spline
- a country\_Australia\_category
- a country\_Czechia\_category
- a country\_USA\_category

# **About Compboost**

## **Current Standard**

Most popular package for model-based boosting is mboost:

- Large number of available base-learner and losses.
- Extended to more complex problems:
  - Functional data
  - GAMLSS models
  - Survival analysis
- Extendible with custom base-learner and losses.

#### So, why another boosting implementation?

- Main parts of mboost are written in R and gets slow for large datasets.
- Complex implementation:
  - Nested scopes
  - Mixture of different R class systems

Fast and flexible framework for model-based boosting:

- With mboost as standard, we want to keep the modular principle of defining custom base-learner and losses.
- Completely written in C++ and exposed by Rcpp to obtain high performance and full memory control.
- R API is written in R6 to provide convenient wrapper.
- Major parts of the compboost functionality are unit tested against mboost to ensure correctness.

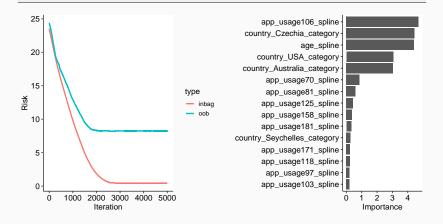
# **Small Demonstration**

boostLinear() and boostSplines() automatically add univariate linear models or a GAM for all features.

#### Visualizing the Results



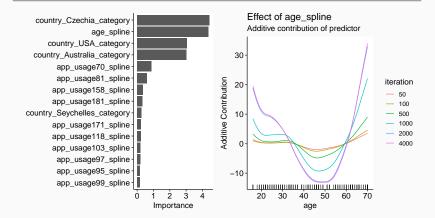
gg2 = cboost\$plotFeatureImportance()



#### Visualizing the Results

cboost\$train(2000L)

```
gg1 = cboost$plotFeatureImportance()
gg2 = cboost$plot("age_spline", iters = c(50, 100, 500, 1000, 2000, 4000))
```



```
cboost = Compboost$new(data = beer_data, target = "beer_consumption",
loss = LossQuantile$new(0.9), learning_rate = 0.1, oob_fraction = 0.3)
```

```
cboost$addBaselearner("age", "spline", BaselearnerPSpline)
cboost$addBaselearner("country", "category", BaselearnerPolynomial)
```

```
cboost$addLogger(logger = LoggerTime, use_as_stopper = TRUE, logger_id = "time",
    max_time = 2e5, time_unit = "microseconds")
```

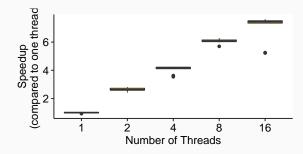
```
cboost$train(10000, trace = 500)
```

| ##                                        | 1/10000                                | risk = 11  | oob_risk = 10  | time = 0 |        |
|-------------------------------------------|----------------------------------------|------------|----------------|----------|--------|
| ##                                        | 500/10000                              | risk = 7.9 | oob_risk = 8.2 | time =   | 22107  |
| ##                                        | 1000/10000                             | risk = 6.3 | oob_risk = 6.6 | time =   | 46764  |
| ##                                        | 1500/10000                             | risk = 5.1 | oob_risk = 5.4 | time =   | 76091  |
| ##                                        | 2000/10000                             | risk = 4.2 | oob_risk = 4.5 | time =   | 112149 |
| ##                                        | 2500/10000                             | risk = 3.5 | oob_risk = 3.8 | time =   | 154647 |
| ##                                        |                                        |            |                |          |        |
| ##                                        |                                        |            |                |          |        |
| ##                                        | ## Train 2978 iterations in 0 Seconds. |            |                |          |        |
| ## Final risk based on the train set: 3.2 |                                        |            |                |          |        |

- **Base-learner:** BaselearnerPolynomial, BaselearnerSpline, BaselearnerCustom, and BaselearnerCustomCpp
- Loss functions: LossQuadratic, LossAbsolute, LossQuantile, LossHuber, LossBinomial, LossCustom, and LossCustomCpp
- Logger/Stopper: LoggerIteration, LoggerInbagRisk, LoggerOobRisk, and LoggerTime
  - → Performance-based early stopping can be applied using the LoggerOobRisk and specifying the relative improvement that should be reached (e.g. 0 for stopping when out of bag risk starts to increase).

# **Performance Considerations**

• Optimizer are parallelized via openmp:



- Take advantage of the matrix structure to speed up the algorithm by reducing the number of repetitive or too expensive calculations.
- Matrices are stored (if possible) as a sparse matrix.

## **Small Comparison With Mboost**

• Runtime (in minutes):

| nrows / ncols | mboost     | compboost    | compboost<br>(16 threads) |  |
|---------------|------------|--------------|---------------------------|--|
| 20000 / 200   | 21.10 (1)  | 10.47 (2.02) | 0.95 (22.21)              |  |
| 20000 / 2000  | 216.70 (1) | 83.95 (2.58) | 8.15 (26.59)              |  |

• Memory (in GB):

| nrows / ncols mboost |          | compboost   | compboost<br>(16 threads) |  |
|----------------------|----------|-------------|---------------------------|--|
| 20000 / 200          | 1.04 (1) | 0.28 (3.71) | 0.30 (3.47)               |  |
| 20000 / 2000         | 8.70 (1) | 2.60 (3.35) | 2.98 (2.92)               |  |

(Comparison was made by just using spline base-learner with 20 knots and 5000 iterations. The numbers in the brackets are the relative values compared to mboost.)

# What's Next?

\_\_\_\_\_

- Research on computational aspects of the algorithm:
  - More stable base-learner selection process via resampling
  - Base-learner selection for arbitrary performance measures
  - Smarter and faster optimizers
- Greater functionality:
  - Functional data structures and loss functions
  - Unbiased feature selection
  - Effect decomposition into constant, linear, and non-linear
- Reducing the memory load by applying binning on numerical features.
- Adding hyperparameter tuning by providing a mlr (mlr3) learner API.
- Exposing C++ classes to python.

• Slides are available at:

www.github.com/schalkdaniel/talk\_compboost\_useR

• Actively developed on GitHub:

www.github.com/schalkdaniel/compboost

• Project page:

www.compboost.org

• JOSS DOI:

10.21105/joss.00967