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mlr3pipelines

Machine Learning Workflows:
Preprocessing: Feature extraction, feature selection, missing data
imputation,. . .
Ensemble methods: Model averaging, model stacking
mlr3: modular model fitting

⇒ mlr3pipelines: modular ML workflows

(replaces mlr2’s mlrCPO and most “wrappers”)

Training 
Data LearnerFactor 

Encoding
Median 

ImputationScaling

2 / 19



Machine Learning Workflows

– what do they look like?

Building blocks: what is happening? → PipeOp

Structure: In what sequence is it happening? → Graph

⇒ Graph: PipeOps as nodes with edges (data flow) between them
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PipeOps
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The Building Blocks
PipeOp: Single Unit of Data Operation

$train(): process data and create $state

$predict(): process data depending on the $state
Multiple inputs or multiple outputs

Scaling

Scaling

Scaling 
Factors

Training 
Data

Transformed 
Data

$train()

State
(learned parameters 

of operation)

Please do not change any of the slides, they are directly used by the 2019 useR mlr3pipelines 
presentation and all presentations that inherit from that one. Instead, add new graphics at the 
end.
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The Building Blocks
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PipeOps so far and planned
Simple preprocessing operations: scale, pca, apply, mutate
Missing value imputation: impute
Feature selection and filtering: select, filter
Categorical data encoding: encode
Undersampling / subsampling: balancesample, subsample, chunk
Learners: learner, learner_cv
Ensemble methods on Predictions: majorityvote, modelavg
Simultaneous and alternative branching: copy, branch, unbranch
Combination of data: featureunion
Backup prediction: backuplearner
Text processing (planned)
Time series and spatio-temporal data (planned)
Multi-output and ordinal targets (planned)
Outlier detection (planned)
Hurdle models (planned)
. . .
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Graph Operations
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The Structure

Graph Operations

The %>>%-operator concatenates Graphs and PipeOps
The gunion()-function unites Graphs and PipeOps
The greplicate()-function unites copies of Graphs and PipeOps
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Learners and Graphs

PipeOpLearner
Learner as a PipeOp
Fits a model, output is Prediction

GraphLearner
Graph as a Learner
All benefits of mlr3: resampling, tuning, nested resampling, . . .
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Linear Pipelines
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mlr3pipelines in Action

Linear Preprocessing Pipeline

graph_pp = mlr_pipeops$get("scale") %>>%
mlr_pipeops$get("encode") %>>%
mlr_pipeops$get("impute") %>>%
mlr_pipeops$get("learner",

learner = mlr_learners$get("classif.rpart"))
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mlr3pipelines in Action

Linear Preprocessing Pipeline
train()ing: Data propagates and creates $states

predict()tion: Data propagates, uses $states

glrn = GraphLearner$new(graph_pp)
glrn$train(task)
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mlr3pipelines in Action

Linear Preprocessing Pipeline
train()ing: Data propagates and creates $states
predict()tion: Data propagates, uses $states

glrn$predict(task)
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mlr3pipelines in Action

Linear Preprocessing PipeLine
Setting / retrieving parameters: $param_set

graph_pp$pipeops$impute$param_set$values$method_num = "mean"

Retrieving state: $state of individual PipeOps (after $train())
graph_pp$pipeops$scale$state %>% head(1)

## $center
## Petal.Length Petal.Width Sepal.Length Sepal.Width
## 3.758000 1.199333 5.843333 3.057333

Retrieving intermediate results: $.result (set debug option before)
graph_pp$pipeops$scale$.result[[1]]$data() %>% head(3)

## Species Petal.Length Petal.Width Sepal.Length Sepal.Width
## 1: setosa -1.335752 -1.311052 -0.8976739 1.0156020
## 2: setosa -1.335752 -1.311052 -1.1392005 -0.1315388
## 3: setosa -1.392399 -1.311052 -1.3807271 0.3273175

12 / 19



mlr3pipelines in Action

Linear Preprocessing PipeLine
Setting / retrieving parameters: $param_set

graph_pp$pipeops$impute$param_set$values$method_num = "mean"

Retrieving state: $state of individual PipeOps (after $train())
graph_pp$pipeops$scale$state %>% head(1)

## $center
## Petal.Length Petal.Width Sepal.Length Sepal.Width
## 3.758000 1.199333 5.843333 3.057333

Retrieving intermediate results: $.result (set debug option before)
graph_pp$pipeops$scale$.result[[1]]$data() %>% head(3)

## Species Petal.Length Petal.Width Sepal.Length Sepal.Width
## 1: setosa -1.335752 -1.311052 -0.8976739 1.0156020
## 2: setosa -1.335752 -1.311052 -1.1392005 -0.1315388
## 3: setosa -1.392399 -1.311052 -1.3807271 0.3273175

12 / 19



mlr3pipelines in Action

Linear Preprocessing PipeLine
Setting / retrieving parameters: $param_set

graph_pp$pipeops$impute$param_set$values$method_num = "mean"

Retrieving state: $state of individual PipeOps (after $train())
graph_pp$pipeops$scale$state %>% head(1)

## $center
## Petal.Length Petal.Width Sepal.Length Sepal.Width
## 3.758000 1.199333 5.843333 3.057333

Retrieving intermediate results: $.result (set debug option before)
graph_pp$pipeops$scale$.result[[1]]$data() %>% head(3)

## Species Petal.Length Petal.Width Sepal.Length Sepal.Width
## 1: setosa -1.335752 -1.311052 -0.8976739 1.0156020
## 2: setosa -1.335752 -1.311052 -1.1392005 -0.1315388
## 3: setosa -1.392399 -1.311052 -1.3807271 0.3273175

12 / 19



Nonlinear Pipelines
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mlr3pipelines in Action

Ensemble Method: Bagging

single_path = "subsample" %>>%
mlr_pipeops$get("learner",

learner = mlr_learners$get("classif.rpart"))
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mlr3pipelines in Action
Ensemble Method: Stacking

graph_stack = gunion(list(
mlr_pipeops$get("learner_cv",

learner = mlr_learners$get("regr.lm")),
mlr_pipeops$get("learner_cv",

learner = mlr_learners$get("regr.svm")),
"null")) %>>%

mlr_pipeops$get("featureunion", innum = 3) %>>%
mlr_pipeops$get("learner",

learner = mlr_learners$get("regr.ranger"))
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Model
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NULL

Feature 
Union

Training 
Data

Random 
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mlr3pipelines in Action
Branching

graph_branch = mlr_pipeops$get("branch", c("pca", "ica")) %>>%
gunion(list("pca", "ica")) %>>%
mlr_pipeops$get("unbranch", c("pca", "ica")) %>>%
mlr_pipeops$get("learner",

learner = mlr_learners$get("classif.kknn"))

PCA

ICA

UnbranchTraining 
Data LearnerBranch

 Execute only one of several alternative paths
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Hyperparameters and Tuning
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Hyperparameters and Tuning

PipeOps have hyperparameters (using paradox pkg)
Graphs have hyperparameters of all components combined
⇒ simultaneous Tuning of Learner and preprocessing
(mlr3tuning package)

library("paradox") ; library("mlr3tuning")
glrn = "scale" %>>% mlr_pipeops$get("learner",

mlr_learners$get("classif.rpart"))
ps = ParamSet$new(list(

ParamLgl$new("scale.scale"),
ParamInt$new("classif.rpart.minsplit", 1, 20)

))
ff = PerformanceEvaluator$new(task, glrn, "cv", "classif.ce", ps)
tuner = TunerRandomSearch$new(ff, TerminatorEvaluations$new(10))

tuner$tune()

tuner$tune_result()
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mlr3pipelines

Not Shown Here:
Many more PipeOps: select, apply, encode, . . .
Automatic type-checking when constructing Graphs
Interactive (html + javascript) plots
Extensible by R6 inheritance of PipeOp base class

Upcoming Features
More PipeOps
Caching of expensive results
Automatically parallel execution of concurrent operations

Thanks! Questions? Comments? Comment on Github?

mlr3: https://github.com/mlr-org/mlr3
mlr3pipelines: https://github.com/mlr-org/mlr3pipelines
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