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What is General-to-Specific (GETS) modelling?

Consider the linear regression yi = β1xi1 + β2xi2 + · · ·+ βikxik + εi

Which x ’s are relevant? That is, which β’s are non-zero?

Which x ’s are not relevant? That is, which β’s are zero?

GETS modelling combines well-known ingredients in a very well-thought
through way. The ingredients are: Backwards elimination (along multiple
paths), t-tests of the β’s, multiple hypothesis tests of the β’s
(Wald-tests), goodness-of-fit measures (e.g. information criteria) and
diagnostics tests

The final model: A parsimonious model that contains the relevant
variables, and – on average – a proportion of irrelevant variables equal to
the regressor significance level α

GETS modelling thus provides a comprehensive, systematic and
cumulative approach to modelling that is ideally suited for conditional
forecasting and scenario analysis more generally

GETS modelling is not limited to linear regression

The R package gets: provides GETS modelling methods, including the
opportunity to user-specify estimators and models
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GETS modelling vs. other algorithms
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LassCV: Cross-validated Lasso, LassFix: Lasso with fixed penalty, DGP: significance in

the DGP itself. Top row shows the false retention rate (gauge), bottom row shows the

correct retention of relevant variables (potency). Columns show uncorrelated,

positively correlated, and alternating positively and negatively correlated regressors.
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Selected reading on GETS modelling:

Hendry and Richard (1982): “On the Formulation of Empirical Models in
Dynamic Econometrics”, Journal of Econometrics

Mizon (1995): “Progressive Modeling of Macroeconomic Time Series:
The LSE Methodology”, in Hoover (ed.) Macroeconometrics.
Developments, Tensions and Prospects, Kluwer Academic Publishers

Hoover and Perez (1999): “Data Mining Reconsidered: Encompassing
and the General-to-Specific Approach to Specification Search”,
Econometrics Journal

Hendry and Krolzig (1999): “Improving on ’Data Mining Reconsidered’
by K.D. Hoover and S.J. Perez”, Econometrics Journal

Campos, Ericsson and Hendry (eds.) (2005): General-to-Specific
Modeling. Volumes 1 and 2. Edward Elgar Publishing

Hendry and Doornik (2014): Empirical Model Discovery and Theory
Evaluation. The MIT Press

Pretis, Reade and Sucarrat (2018): “Automated General-to-Specific
(GETS) Regression Modeling and Indicator Saturation for Outliers and
Structural Breaks”, J.Stat.Software
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Why user-specified GETS modelling?

If coded from scratch, then user-specified implementation of GETS
modelling puts a large programming-burden on the user

Also, GETS modelling is computationally intensive, since many models
must be estimated and checked/diagnosed

We provide a flexible and computationally efficient framework in R for the
implementation of GETS modelling with user-specified estimators and
models:

– The R universe provides an enormous source of potential estimators
and models to be used in GETS modelling

– The user-specified estimators can, in principle, be implemented in
external languages (e.g. C/C++, Fortran, Python, Java, Ox, STATA,
EViews, MATLAB, etc.)

– Main function for user-specified GETS: getsFun

– gets method (S3), see Example 3:

mymodel <- lm(y ∼ x)

gets(mymodel) # a gets.lm function applied to ‘mymodel’
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Outline

GETS modelling in more detail

– Implementation

– Model selection properties

User-specified GETS

– The getsFun function

– Example 1: Faster OLS (w/Matrix package)

– Example 2: Regression with an ARMA-error (w/arima)

– Example 3: A gets method (S3) for lm

Conclusions

– Summary

– Outlook
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GETS modelling
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GETS modelling

Four ingredients:

Backwards elimination (along multiple paths)

Coefficient significance testing (individual and joint)

Fit criteria (e.g. information criteria)

Diagnostics testing

GETS modelling in 3 steps:

1. Formulate a General Unrestricted Model (GUM). Optional:
They should pass the chosen diagnostics tests

2. Backwards elimination of insignificant regressors along
multiple paths, while at each regressor removal: a) Test for
joint insignificance and b) Check the diagnostics (optional)

3. Choose the best terminal model according to a fit criterion
(e.g. an information criterion)
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Example

The starting model (i.e. the estimated GUM):

yt
[p−val ]

= β̂1
[0.07]

x1t + β̂2
[0.02]

x2t + β̂3
[0.26]

x3t + ε̂t

P-values of two-sided t-tests in square brackets

If we choose a 5% significance level, then deletion along two paths

Path 1: Start by deleting x1t to obtain

yt
[p−val ]

= β̂2
[0.00]

x2t + β̂3
[0.22]

x3t + ε̂t

Next, deleting x3t gives

yt
[p−val ]

= β̂2
[0.00]

x2t + ε̂t ,

i.e. the terminal model of path 1, where the deletion path is {x1t , x3t}
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Example (cont.)

Recall the starting model (i.e. the estimated GUM):

yt
[p−val ]

= β̂1
[0.07]

x1t + β̂2
[0.02]

x2t + β̂3
[0.26]

x3t + ε̂t

Path 2: Start by deleting x3t to obtain

yt = β̂1
[0.03]

x1t + β̂2
[0.00]

x2t + ε̂t

i.e. the terminal model of path 2

Summarised:

Path 1 = {x1t , x3t} with terminal model = {x2t}

Path 2 = {x3t} with terminal model = {x1t , x2t}
The final model: The best among the terminals according to a
fit-criterion, e.g. the Schwarz (1978) information criterion

In addition: Diagnostics testing and multiple hypothesis testing
(“Parsimonious Encompassing Tests”) at each deletion (this increases
power)
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Model selection properties of GETS

Model selection properties of GETS modelling (as T →∞):

All the relevant regressors in the starting model (i.e. the GUM) will be
retained in the final model

On average α · k irrelevant regressors will be retained, where α is the
chosen significance level for the t-tests

Example: Suppose the starting model (i.e. the GUM) is

yt = β1x1t + · · ·+ βkxtk + εt with k = 100 irrelevant regressors

Choosing α = 0.10 means an average of 0.10 · 100 = 10 irrelevant
regressors will be retained

Choosing α = 0.05 means an average of 0.05 · 100 = 5 irrelevant
regressors will be retained

Choosing α = 0.01 means an average of 0.01 · 100 = 1 irrelevant
regressors will be retained
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User-specified GETS
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The getsFun function

getsFun undertakes GETS modelling with a user-specified
estimator/model together with user-specified diagnostics
(optional) and user-specified (optional) fit-criteria

Main arguments:

y: Left-hand side variable

x: Regressor matrix

user.estimator: A list containing the name of the
user-specified estimator/model and further arguments to be
passed on to the estimator

The function w/three first arguments:

getsFun(y, x, user.estimator = list(name="ols",

tol=1e-07, LAPACK=FALSE, method=3), ...)
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The getsFun function (cont.)
Example: Linear regression

yt = β1x1t + · · · + βkxkt + εt , t = 1, . . . , n

Code:

library(gets) #load library (if necessary)

n = 40 #number of observations

k = 20 #number of Xs

set.seed(123) #for reproducability

y = 0.1*rnorm(n) #generate Y

x = matrix(rnorm(n*k), n, k) #create matrix of Xs

#do gets w/default estimator (ols):

getsFun(y, x)
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The getsFun function (cont.)
Some of the output:

18 path(s) to search

Searching: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

$time.started

[1] "Wed Jun 26 16:16:47 2019"

$time.finished

[1] "Wed Jun 26 16:16:47 2019"

$no.of.estimations

[1] 308

$paths

$paths[[1]]

[1] 1 15 6 7 3 14 11 16 4 2 8 12 5 9 20 19 13

$paths[[2]]

[1] 2 16 11 7 6 15 14 8 4 12 20 19 1 3 9 5 13
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The getsFun function (cont.)

.

.

.

$paths[[18]]

[1] 20 16 7 15 6 14 11 8 4 19 2 12 1 3 9 5 13

$terminals.results

info(sc) logl n k

spec 1: -2.090464 47.34259 40 3

spec 2: -2.075247 45.19382 40 2

$best.terminal

[1] 1

$specific.spec

[1] 10 17 18
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The getsFun function (cont.)

The user-specified estimator/model should:

Be of the form myEstimator(y, x, ...), where y is a
vector and x is a matrix

Return a list with a minimum of six entries:

coefficients (the coefficient estimates)

vcov (the coefficient covariance matrix)

df (degrees of freedom, used for the t-statistics)

logl (a goodness-of-fit value, e.g. the log-likelihood)

n (number of observations)

k (number of parameters)

The estimator must be able to handle NULL regressor-matrices
(i.e. is.null(x)=TRUE or NCOL(x)=0)
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The getsFun function (cont.)

User-specified diagnostics (optional):

Use the user.diagnostics argument

The argument should be a list with first entry
name="myDiagnosticsFunction" (say)

User-specified Goodness-of-Fit function (optional):

Use the gof.function and gof.method arguments

The former should be a list with first entry
name="myGofFunction" (say)

The latter should be either "min" (default) or "max"
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Examples

Example 1: Faster OLS

– using the Matrix package to build a faster OLS estimator

Example 2: Regression with an ARMA-error

– using the arima function to automatically search for breaks
(location shifts) in a time-series

Example 3: A gets method (S3) for lm

– enables us to to do:

mymodel <- lm(y ∼ x)

gets(mymodel)
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Example 1: Faster OLS

There are packages and routines that can be used to make
OLS faster, e.g. the Matrix package

The code below creates a new function, olsFaster, which is
essentially a copy of ols(y, x, method=3) from our gets
package, but based on routines from the Matrix package

microbenchmark suggests a speed improvement of 10%

The code:

library(Matrix)

olsFaster <- function(y, x){

out <- list()

out$n <- length(y)

if (is.null(x)){ out$k <- 0 }else{ out$k <- NCOL(x) }

out$df <- out$n - out$k
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Example 1: Faster OLS (cont.)

if (out$k > 0) {

x <- as(x, "dgeMatrix")

out$xpy <- crossprod(x, y)

out$xtx <- crossprod(x)

out$coefficients <- as.numeric(solve(out$xtx,out$xpy))

out$xtxinv <- solve(out$xtx)

out$fit <- out$fit <- as.vector(x %*% out$coefficients)

}else{ out$fit <- rep(0, out$n) }

out$residuals <- y - out$fit

out$residuals2 <- out$residuals^2

out$rss <- sum(out$residuals2)

out$sigma2 <- out$rss/out$df

if (out$k > 0) { out$vcov <- as.matrix(out$sigma2 * out$xtxinv) }

out$logl <-

-out$n * log(2 * out$sigma2 * pi)/2 - out$rss/(2 * out$sigma2)

return(out)

}

To run: getsFun(y, x, user.estimator=list(name="olsFaster"))
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Example 2: Regression with an ARMA-error
Example: Linear regression w/deterministic regressors (X ’s) and
ARMA(1,1)-error

yt = β1xt1 + · · ·+ βkxtk + εt ,

εt = φ1εt−1 + θ1ut−1 + ut , ut ∼ N(0, 1)

The Data Generating Process (DGP):

yt = 4 · 1(t ≥ 30) + εt , εt = 0.4εt−1 + 0.1ut−1 + ut

Note: This is a re-parametrisation of an ARMA(1,1) w/location-shift:

yt = β∗t + φ1yt−1 + θ1ut−1 + ut , yt = inflation (say)

R code for the DGP:

set.seed(123) #for reproducability

eps = arima.sim(list(ar=0.4, ma=0.1), 60) #epsilon

x = coredata(sim(eps, which.ones=25:35)) #11 step-dummies

y = 4*x[,"sis30"] + eps #the dgp

plot(y, col="blue", lwd=2)
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User-specified GETS: Example 2 (cont.)

The DGP:

Time

y

0 10 20 30 40 50 60
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2

0
2
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Example 2: Regression with an ARMA-error (cont.)

A user-specified estimator (example):

myEstimator <- function(y, x){

tmp = arima(y, order=c(1,0,1), xreg=x)

#rename and re-organise:

result = list()

result$coefficients = tmp$coef[-c(1:3)]

result$vcov = tmp$var.coef

result$vcov = result$vcov[-c(1:3),-c(1:3)]

result$logl = tmp$loglik

result$n = tmp$nobs

result$k = NCOL(x)

result$df = result$n - result$k

return(result)

}

##try estimator:

myEstimator(y, x)
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Example 2: Regression with an ARMA-error (cont.)

The GUM (i.e. the general starting model):

yt =
11∑
i=1

βi · 1{t≥24+i} + εt , εt = φ1εt−1 + θ1ut−1 + ut

Do GETS modelling with myEstimator:

##estimate the gum and then do gets:

getsFun(y, x, user.estimator=list(name="myEstimator"))
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Example 3: A gets method (S3) for lm (cont.)

Aim: To be able to do...

mymodel <- lm(y ∼ x)

gets(mymodel)

Accordingly, we need to make gets.lm:

gets.lm <- function(object, ...){

##make y:

y <- as.vector(object$model[,1])

yName <- names(object$model)[1]

##make x:

x <- as.matrix(object$model[,-1])

xNames <- colnames(x)
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Example 3: A gets method (S3) for lm (cont.)

if(NCOL(x)==0){

x <- NULL; xNames <- NULL

}else{

if(is.null(xNames)){

xNames <- paste0("X", 1:NCOL(x))

colnames(x) <- xNames

}

}

##is there an intercept?

if(length(coef(object))>0){

cTRUE <- names(coef(object))[1] == "(Intercept)"

if(cTRUE){

x <- cbind(rep(1,NROW(y)),x)

xNames <- c("(Intercept)", xNames)

colnames(x) <- xNames

}

}
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Example 3: A gets method (S3) for lm (cont.)

##do gets:

myspecific <- getsFun(y, x, ...)

##which are the retained regressors?:

retainedXs <- xNames[myspecific$specific.spec]

cat("Retained regressors:\n ", retainedXs, "\n")

##return result

return(myspecific)

} #close gets.lm function

Do gets: gets(mymodel)
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Conclusions
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Summary

General-to-Specific (GETS) modelling provides a comprehensive,
systematic and cumulative approach to modelling ideally suited for
conditional forecasting and policy analysis

User-specified implementation of these methods, however, puts a large
programming-burden on the user, and may require substantial computing
power

We develop a flexible and computationally efficient framework for the
implementation of GETS methods with user-specified estimators and
models:

– The R universe provides an enormous source of potential estimators
and models that can be used in GETS modelling

– Main function for user-specified GETS: getsFun

– The user-specified estimators can, in principle, be implemented in
external languages (e.g. C/C++, Fortran, Python, Java, Ox, STATA,
EViews, MATLAB, etc.) by letting getsFun call functions externally

– gets S3 method
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Outlook

Our software is continuously being maintained and improved

Some of the items on our ‘to do list’:

– User-specified Indicator Saturation (ISAT)

– Additional ISAT features

– Simpler parallel computing

– Faster search and computing

The developments reflect, to some extent, our research
interests – and time!
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Thanks!
sucarrat.net/R/gets

https://CRAN.R-project.org/package=gets

github.com/gsucarrat/gets

sucarrat.net/R/gets
https://CRAN.R-project.org/package=gets
github.com/gsucarrat/gets
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