Teaching data science with puzzles
useR! 2019
Irene Steve
bit.ly/ds-puzzles

$$
\begin{aligned}
& \text { II } \\
& \text {--*-- } \\
& >0< \\
& >0 \lll \\
& \gg 0 \gg \star< \\
& >0 \lll \mathrm{O} \lll \\
& \ggg \star \ll 0 \lll \\
& >\mathrm{O} \gg \mathrm{e} \ggg \mathrm{O}>\mathrm{O} \ll \\
& >\star \gg \star<\mathrm{O}<\mathrm{C}<\mathrm{O} \lll< \\
& >\mathrm{O}\rangle \mathrm{O} \lll 0<\star\rangle>\star\rangle>0< \\
& \text { - -- }\left|\left.\right|_{--}\right.
\end{aligned}
$$

Advent of Code

Our sponsors help
Crossing the bridge, you've barely reached the other side of the stream when a program comes up to you, clearly in distress. "It's my child process," she says, "he's gotten lost in an infinite grid!"

Fortunately for her, you have plenty of experience with infinite grids. Unfortunately for you, it's a hex grid.

The hexagons ("hexes") in this grid are aligned such that adjacent hexes can be found to the north, northeast, southeast, south, southwest, and northwest:

You have the path the child process took. Starting where he started, you need to determine the fewest number of steps required to reach him. (A "step" means to move from the hex you are in to any adjacent hex.)

For example:

- ne, ne, ne is 3 steps away.
- ne,ne,sw,sw is 0 steps away (back where you started).
- ne, ne,s,s is 2 steps away (se,se)
- se, sw, se, sw, sw is 3 steps away ($s, s, s w$).

Unique puzzle input
To begin, get your puzzle input.
Answer submission
Our sponsors help
make Advent of Code possible:

Novetta - Unleash your imagination. Innovate at Novetta.

I solved these
 with R, but boy was it clunky!

Let's make puzzles that highlight what R/the tidyverse are

 good at!Bite-sized puzzles that focus on core data science skills as championed by the tidyverse set of packages
[still unreleased!]

Wrangling

Wrangling

Workflow

Web-based experience

Tidies of March

Select puzzie:

11_sandwiches

Select user ID:

1
The little sandwich store around the corner makes the best sandwiches! lt's an adventure every time you go there-you can get everything from classics like Italian beef sandwiches to more exciting choices like Fluffernutters and Kokoretsi sandwiches.
Unfortunately, they're spending so much on ingredients that they can't turn a profit. They've decided to cut their selection and only focus on their best-selling sandwich.
They've collected data on the favorite sandwiches among customers that came into the store in the last month. Most people ended up listing several sandwiches as their favorites (in no particular order), so the data looks like this:

Language \& platform agnostic

Workflow

R-mediated experience


```
Console Terminal
```


Environment History Connections

I
© New Connection
Connection

Files Plots Packages Help Viewer
B Project: (None) 0 215

Status

README.Rmd ×
README.Rmd ×

```
title: "Tidies of March 2019"
```

output: html_document

… $\{r$ setup, include=FALSE $\}$
library(tidyverse)
library(fs)
library(here)
library(glue)
\#\# Table of Contents
. - \{r echo = FALSE, results = "asis"\}
puzzle_dirs <- dir_ls(".", type = "directory", regexp = "^[0-9]\{2\}_")
puzzle_no <- str_extract(puzzle_dirs, "^[0-9]\{2\}(?=_)")
puzzle_name <- str_extract(puzzle_dirs, "(?<=_)[a-z-]+")
glue("\{puzzle_no\}.
[\{puzzle_name\}](%7Bpuzzle_dirs%7D/%7Bpuzzle_no%7D_solution.R)")

Paths that work in the console \& when rendered

The neighborhood deli makes amazing sandwiches--from classics like BLTs to dessert sandwiches like Fluffernutters. Since many of their specialty ingredients keep going bad, they've decided to cut their selection and focus on their best-selling sandwich.

To help with the decision, the storeowners collected data on their customers' favorites. Most people listed several varieties (in no particular order). Here's a sample of the data:

names	sandwiches
Abby	Denver; BLT; Torta ahogada; Barbecue
Abigail	BLT; Ftira; Primanti; Ice cream; Choripán
Adam	Corned beef; Montadito; Cheesesteak; Tripleta; Dagwood; Jambon-beurre
Alexa	Dagwood; Mortadella
Ana	Fried brain; Polish boy; Vegetable; Pudgy Pie; Dagwood

In this sample, the Dagwood sandwich is the most popular.

In the full dataset, what is the most popular sandwich among the customers?

names	sandwiches
Abby	Denver; BLT; Torta ahogada; Barbecue
Abigail	BLT; Ftira; Primanti; Ice cream; Choripán
Adam	Corned beef; Montadito; Cheesesteak; Tripleta; Dagwood; Jambon-beurre
Alexa	Dagwood; Mortadella
Alexandria	Slider; Beschuit met muisjes; Chicken salad
Ana	Fried brain; Polish boy; Vegetable; Pudgy Pie; Dagwood

In this sample, the Dagwood sandwich is the most popular.

```
SW
## # A tibble: 6 x 2
## names sandwiches
## <chr> <chr>
## 1 Abby Denver; BLT; Torta ahogada; Barbecue
## 2 Abigail BLT; Ftira; Primanti; Ice cream; Choripán
## 3 Adam Corned beef; Montadito; Cheesesteak; Tripleta; Dagwood; Jamb
## 4 Alexa Dagwood; Mortadella
## 5 Alexandria Slider; Beschuit met muisjes; Chicken salad
## 6 Ana Fried brain; Polish boy; Vegetable; Pudgy Pie; Dagwood
```

```
    sw %>%
    separate_rows(sandwiches, sep = "; ")
## # A tibble: 25 x 2
## names sandwiches
## <chr> <chr>
## 1 Abby Denver
## 2 Abby BLT
## 3 Abby Torta ahogada
## 4 Abby Barbecue
## 5 Abigail BLT
## 6 Abigail Ftira
## 7 Abigail Primanti
## 8 Abigail Ice cream
## 9 Abigail Choripán
## 10 Adam Corned beef
## # ... with 15 more rows
```

sw \%>\%
separate_rows(sandwiches, sep $=$ "; ") \%>\%
count(sandwiches, sort $=$ TRUE)
\#\# \# A tibble: 22×2
\#\# sandwiches
<int>
\#\# <chr>
\#\# 1 Dagwood 3
\#\# 2 BLT 2
\#\# 3 Barbecue 1
\#\# 4 Beschuit met muisjes 1
\#\# 5 Cheesesteak 1
\#\# 6 Chicken salad 1
\#\# 7 Choripán 1
\#\# 8 Corned beef 1
\#\# 9 Denver 1
\#\# 10 Fried brain 1
\#\# \# ... with 12 more rows


```
Console Terminal x Files Plots Packages Help Viewer
Files Plots Packages Help Viewer - \(\square\)


```

