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- p variables - q variables

> “Omics.” Y matrix: gene expression, X matrix: SNP (single
nucleotide polymorphism). Many others such as proteomic,
metabolomic data.

> “neuroimaging”. Y matrix: behavioral variables, X matrix: brain
activity (e.g., EEG, fMRI, NIRS)

> “neuroimaging genetics.” Y matrix: fMRI (Fusion of functional
magnetic resonance imaging), X matrix: SNP

» “Ecology/Environment.” Y matrix: Water quality variables , X
matrix: Landscape variables



Definition of BIG DATA

Big data vary in shape: These call for different approaches

» Wide Data
» Tall Data
» Tall and Wide



BIG DATA: Wide Data

Wide Data

Thousands / Millions of Variables

Hundreds of Samples

Screening and fdr,
Lasso, SVM, Stepwise

We have too many variables, prone to overfitting. Need to remove
variable, or regularize, or both



BIG DATA: Tall Data

Tens / Hundreds of Variables

Thousands / Millions of Samples
GLM, Random Forests,
Boosting, Deep Learning

Sometimes simple models (linear) don't suffice.
We have enough samples to fit nonlinear models with many
interactions, and not too many variables.

Good automatic methods for doing this.




BIG DATA: Tall and Wide Data

Tall and Wide Data

Thousands / Millions of Variables

Millions to Billions of Samples

Tricks of the Trade

Exploit sparsity

Random projections / hashing
Variable sereening

Subsample rows

Divide and recombine

Case/ control sampling
MapReduce

ADMM (divide and conquer)




Genomics Data: Wide Data, High Dimensional Data

» Main constraint: situation with p > n
» Strong colinearity among the variables.



Genomics Data: Wide Data, High Dimensional Data

» Main constraint: situation with p > n
» Strong colinearity among the variables.

Contribution:

» Incorporation of knowledge on the structure existing in the data
> Potential grouping of the covariates is key to:

> more accurate prediction
> improved interpretability



Group structures within the data

> Genomics: genes within the same pathway have similar
functions and act together in regulating a biological system.
— These genes can add up to have a larger effect

< can be detected as a group (i.e., at a pathway or gene
set/module level).



Group structures within the data

> Genomics: genes within the same pathway have similar
functions and act together in regulating a biological system.

— These genes can add up to have a larger effect

< can be detected as a group (i.e., at a pathway or gene
set/module level).

We consider variables are divided into groups:

> Example p: SNPs grouped into K genes
X =[SNP;,...+ SNP | SNPy.1, SNP,2,...,SNP,|...| SNP,4, ..., SNPy]

geney genez genek

> Example p: genes grouped into K pathways/modules (X; = gene;)

X= X1, Xos ooy Xic | Xirts Xiwzs oo os Xn Lo [ Xty Xz -0, Xp]
[ ———

My My My




Our contribution for Multivariate phenotypes

< P > <« q >
G1 G2 GK
n Predictor matrix: Outcome matrix: | (n
- n observations - n observations
- p variables - g variables
- K groups

> Select group variables taking into account the data structures;
all the variables within a group are selected otherwise none of
them are selected

» Combine both sparsity of groups and within each group; only
relevant variables within a group are selected



Our contribution for Multivariate phenotypes
> Sparse Group PLS : SNP c Gene or Gene c Pathways

Liquet B., Lafaye de Micheaux P., Hejblum B. and Thiebaut R., (2016) Group and
Sparse Group Partial Least Square Approaches Applied in Genomics Context.
Bioinformatics, 32(1), 35-42.

library(sgPLS)

> Sparse Group subgroup PLS : SNP c Gene c Pathways

M. Sutton, R. Thiebaut, and B. Liquet. (2018) Sparse group subgroup Partial Least
Squares with application to genomics data. Statistics in Medicine.

install_github("sgsPLS", "matt-sutton")
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Liquet B., Lafaye de Micheaux P., Hejblum B. and Thiebaut R., (2016) Group and
Sparse Group Partial Least Square Approaches Applied in Genomics Context.
Bioinformatics, 32(1), 35-42.

library(sgPLS)

> Sparse Group subgroup PLS : SNP c Gene c Pathways

M. Sutton, R. Thiebaut, and B. Liquet. (2018) Sparse group subgroup Partial Least
Squares with application to genomics data. Statistics in Medicine.

install_github("sgsPLS", "matt-sutton")

Main ideas:

> combining Ly and L, penalties into the optimization function

> Sparse Group Penalties:
G

A1) JpgllByllz + Al1Bll

g=1



Why PLS ?

Aims:

1. Symmetric situation. Analyze the association between two
blocks of information. Analysis focused on shared information.

2. Asymmetric situation. X matrix= predictors and Y matrix=
response variables. Analysis focused on prediction.
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Why PLS ?

Aims:

1. Symmetric situation. Analyze the association between two
blocks of information. Analysis focused on shared information.

2. Asymmetric situation. X matrix= predictors and Y matrix=
response variables. Analysis focused on prediction.

> Partial Least Square Family: dimension reduction approaches
> PLS finds pairs of latent vectors ¢ = Xu, w = Yv with maximal
covariance.

e.g., &=usxXSNPy+ U, x SNPy +---+ U, x SNP,

> Symmetric situation and Asymmetric situation.
> Matrix decomposition of X and Y into successive latent
variables.

Latent variables: are not directly observed but are rather inferred
(through a mathematical model) from other variables that are
observed (directly measured). Capture an underlying phenomenon
(e.g., health).



How it works ?

Now some mathematics ...



PLS family

PLS = Partial Least Squares or Projection to Latent Structures\ $ $\
Four main methods coexist in the literature:

(i) Partial Least Squares Correlation (PLSC) also called PLS-SVD;
(i) PLS in mode A (PLS-W2A, for Wold’s Two-Block, Mode A PLS);

(iiiy PLS in mode B (PLS-W2B) also called Canonical Correlation
Analysis (CCA);
(iv) Partial Least Squares Regression (PLSR, or PLS2).



PLS family

PLS = Partial Least Squares or Projection to Latent Structures\ $ $\
Four main methods coexist in the literature:

(i) Partial Least Squares Correlation (PLSC) also called PLS-SVD;
(i) PLS in mode A (PLS-W2A, for Wold’s Two-Block, Mode A PLS);

(iiiy PLS in mode B (PLS-W2B) also called Canonical Correlation
Analysis (CCA);

(iv) Partial Least Squares Regression (PLSR, or PLS2).

> (i),(ii) and (iii) are symmetric while (iv) is asymmetric.
» Different objective functions to optimise.

» Good news: all use the singular value decomposition (SVD).



Singular Value Decomposition (SVD)

Definition
Let a matrix M : p X g of rank r:

i
M=UAVT = su], (1)

=1

> U= (u):pxpandV = (v)) : g X q are two orthogonal matrices
which contain the normalised left (resp. right) singular vectors

> A = diag(d1,...,0,,0,...,0): the ordered singular values
012022206, >0.

Note: fast and efficient algorithms exist to solve the SVD.



Connexion between SVD and maximum covariance

We were able to describe the optimization problem of the four
PLS methods as:

(u*,v*) = argmax Cov(Xp_1uU,Yp_1V), h=1,..., H.
llull,=lIvll,=1

Matrices X and Y, are obtained recursively from X,_1 and
Yh_q.
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Connexion between SVD and maximum covariance

We were able to describe the optimization problem of the four
PLS methods as:

(u*,v*) = argmax Cov(Xp_1uU,Yp_1V), h=1,..., H.
llull,=lIvll,=1

Matrices X and Y, are obtained recursively from X,_1 and
Yh_q.

The four methods differ by the deflation process, chosen so that the
above scores or weight vectors satisfy given constraints.

The solution at step h is obtained by computing only the first triplet
(61, U1, vy) of singular elements of the SVD of Mp_1 = X! ,Yp_+:

(U, v?) = (uy, vy)

Why is this useful ?



SVD properties

Theorem

Eckart-Young (1936) states that the (truncated) SVD of a given
matrix M (of rank r) provides the best reconstitution (in a least
squares sense) of M by a matrix with a lower rank k:

2 r
= > &

F  {=k+1

k
min M- AlZ = ||M - seuv]
A of rank k =

If the minimum is searched for matrices A of rank 1, which are
~—T — —~ .
under the form uv' where u, v are non-zero vectors, we obtain

min
uyv

m-wf - ;52 _IM=sunTJE.



SVD properties

Thus, solving

T2
argmin ”Mh_1 = UVTH (2)
uv F

and norming the resulting vectors gives us u; and v4. This is
another approach to solve the PLS optimization problem.



Towards sparse PLS

» Shen and Huang (2008) connected (2) (in a PCA context) to
least square minimisation in regression:

2 2
—TII2 — — |
Moy T = ||vectMn1) - (T, @ TY| = ||vec(Mn1) - (Ve To)u
F —————— — ————— — |

y x8 s y x5l

— Possible to use many existing variable selection techniques using
regularization penalties.
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» Shen and Huang (2008) connected (2) (in a PCA context) to
least square minimisation in regression:

2 2
—TII2 — — |
Moy T = ||vectMn1) - (T, @ TY| = ||vec(Mn1) - (Ve To)u
F —————— — ————— — |

y x8 s y x5l

— Possible to use many existing variable selection techniques using
regularization penalties.

We propose iterative alternating algorithms to find normed vectors
u/|[ul] and v/|[v|| that minimise the following penalised
sum-of-squares criterion
—TI2 L
HMh_1 -uv ”F + Py(u,v),
for various penalization terms P,(u, v).

— We obtain several sparse versions (in terms of the weights u and
v) of the four methods (i)—(iv).



Regularized PLS scalable for BIG-DATA

What happens in a MASSIVE DATA SET context?



Regularized PLS scalable for BIG-DATA

What happens in a MASSIVE DATA SET context?

Massive datasets. The size of the data is large and analysing it
takes a significant amount of time and computer memory.

Emerson & Kane (2012). Dataset considered large if it exceeds
20% of the RAM (Random Access Memory) on a given machine,
and massive if it exceeds 50%



Tall Data

Case of a lot of observations: two massive data sets X: n x p matrix
and Y: n x g matrix due to a large number of observations.

We suppose here that n is very large, but not p nor g.
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Tall Data

Case of a lot of observations: two massive data sets X: n x p matrix
and Y: n x g matrix due to a large number of observations.

We suppose here that n is very large, but not p nor g.

PLS algorithm mainly based on the SVD of Mj_1 = X] . Yp_+:

Dimension of Mp_1: p x g matrix !!
This matrix fits into memory.

But not X nor Y.



Computation of M = XTY by chunks

G
M=XTY =" X Y
g=1

All terms fit (successively) into memory!




Computation
Computation of M = XTY by chunks using R

> No need to load the big matrices X and Y

> Use memory-mapped files (called “filebacking”) through the
bigmemory package to allow matrices to exceed the RAM size.

> A big.matrix is created which supports the use of shared
memory for efficiency in parallel computing.

» foreach: package for running in parallel the computation of M
by chunks



Computation
Computation of M = XTY by chunks using R

> No need to load the big matrices X and Y

> Use memory-mapped files (called “filebacking”) through the
bigmemory package to allow matrices to exceed the RAM size.

> A big.matrix is created which supports the use of shared
memory for efficiency in parallel computing.

» foreach: package for running in parallel the computation of M
by chunks

Regularized PLS algorithm:
» Computation of the components (“Scores”):
Xu(nx1)and Yv (nx 1)

» Easy to compute by chunks and store in a big.matrix object.



Concluding Remarks and Take Home Message

> We were able to derive a simple unified algorithm that perfoms
standard, sparse, group and sparse group versions of the four
classical PLS algorithms (i)—(iv). (And also PLSDA.)

> We used big memory objects, and a simple trick that makes
our procedure scalable to big data (large n).

» We also parallelized the code for faster computation.

» We have also offered a version of this algorithm for any
combination of large values of n, p and q.

sgPLS Available on CRAN
sgsPLS and bigsgPLS Available now on GITHUB:

library(devtools)
install_github("sgsPLS","bigsgPLS", "matt-sutton")
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