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Data Definition and Examples

- n observations

- p variables

X
n

- n observations

- q variables

Y
n

p q

I “Omics.” Y matrix: gene expression, X matrix: SNP (single
nucleotide polymorphism). Many others such as proteomic,
metabolomic data.

I “neuroimaging”. Y matrix: behavioral variables, X matrix: brain
activity (e.g., EEG, fMRI, NIRS)

I “neuroimaging genetics.” Y matrix: fMRI (Fusion of functional
magnetic resonance imaging), X matrix: SNP

I “Ecology/Environment.” Y matrix: Water quality variables , X
matrix: Landscape variables
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Definition of BIG DATA

Big data vary in shape: These call for different approaches

I Wide Data
I Tall Data
I Tall and Wide



BIG DATA: Wide Data

We have too many variables, prone to overfitting. Need to remove
variable, or regularize, or both



BIG DATA: Tall Data



BIG DATA: Tall and Wide Data



Genomics Data: Wide Data, High Dimensional Data

I Main constraint: situation with p > n
I Strong colinearity among the variables.

Contribution:

I Incorporation of knowledge on the structure existing in the data
I Potential grouping of the covariates is key to:

I more accurate prediction
I improved interpretability
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Group structures within the data

I Genomics: genes within the same pathway have similar
functions and act together in regulating a biological system.

↪→ These genes can add up to have a larger effect

↪→ can be detected as a group (i.e., at a pathway or gene
set/module level).

We consider variables are divided into groups:

I Example p: SNPs grouped into K genes

X = [SNP1, . . . + SNPk︸                 ︷︷                 ︸
gene1

|SNPk+1,SNPk+2, . . . ,SNPh︸                              ︷︷                              ︸
gene2

| . . . |SNPl+1, . . . ,SNPp︸                 ︷︷                 ︸
geneK

]

I Example p: genes grouped into K pathways/modules (Xj = genej)

X = [X1,X2, . . . ,Xk︸           ︷︷           ︸
M1

|Xk+1,Xk+2, . . . ,Xh︸                 ︷︷                 ︸
M2

| . . . |Xl+1,Xl+2, . . . ,Xp︸               ︷︷               ︸
MK

]
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Our contribution for Multivariate phenotypes

I Select group variables taking into account the data structures;
all the variables within a group are selected otherwise none of
them are selected

I Combine both sparsity of groups and within each group; only
relevant variables within a group are selected



Our contribution for Multivariate phenotypes
I Sparse Group PLS : SNP ⊂ Gene or Gene ⊂ Pathways

Liquet B., Lafaye de Micheaux P., Hejblum B. and Thiebaut R., (2016) Group and
Sparse Group Partial Least Square Approaches Applied in Genomics Context.
Bioinformatics, 32(1), 35–42.

library(sgPLS)

I Sparse Group subgroup PLS : SNP ⊂ Gene ⊂ Pathways

M. Sutton, R. Thiebaut, and B. Liquet. (2018) Sparse group subgroup Partial Least
Squares with application to genomics data. Statistics in Medicine.

install_github("sgsPLS", "matt-sutton")

Main ideas:

I combining L1 and L2 penalties into the optimization function
I Sparse Group Penalties:

λ1

G∑
g=1

√
pg ||βg ||2 + λ2||β||1
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Why PLS ?
Aims:

1. Symmetric situation. Analyze the association between two
blocks of information. Analysis focused on shared information.

2. Asymmetric situation. X matrix= predictors and Y matrix=
response variables. Analysis focused on prediction.

I Partial Least Square Family: dimension reduction approaches
I PLS finds pairs of latent vectors ξ = Xu, ω = Yv with maximal

covariance.

e.g., ξ = u1 × SNP1 + u2 × SNP2 + · · · + up × SNPp

I Symmetric situation and Asymmetric situation.
I Matrix decomposition of X and Y into successive latent

variables.

Latent variables: are not directly observed but are rather inferred
(through a mathematical model) from other variables that are
observed (directly measured). Capture an underlying phenomenon
(e.g., health).
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How it works ?

Now some mathematics ...



PLS family

PLS = Partial Least Squares or Projection to Latent Structures\ $ $\
Four main methods coexist in the literature:

(i) Partial Least Squares Correlation (PLSC) also called PLS-SVD;

(ii) PLS in mode A (PLS-W2A, for Wold’s Two-Block, Mode A PLS);

(iii) PLS in mode B (PLS-W2B) also called Canonical Correlation
Analysis (CCA);

(iv) Partial Least Squares Regression (PLSR, or PLS2).

I (i),(ii) and (iii) are symmetric while (iv) is asymmetric.

I Different objective functions to optimise.

I Good news: all use the singular value decomposition (SVD).
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Singular Value Decomposition (SVD)

Definition
Let a matrixM : p × q of rank r :

M =U∆VT =
r∑

l=1

δlulvT
l , (1)

I U = (ul) : p × p andV = (v l) : q × q are two orthogonal matrices
which contain the normalised left (resp. right) singular vectors

I ∆ = diag(δ1, . . . , δr , 0, . . . , 0): the ordered singular values
δ1 > δ2 > · · · > δr > 0.

Note: fast and efficient algorithms exist to solve the SVD.



Connexion between SVD and maximum covariance

We were able to describe the optimization problem of the four
PLS methods as:

(u∗, v∗) = argmax
‖u‖2=‖v‖2=1

Cov(Xh−1u,Yh−1v), h = 1, . . . ,H.

Matrices Xh and Yh are obtained recursively from Xh−1 and
Yh−1.

The four methods differ by the deflation process, chosen so that the
above scores or weight vectors satisfy given constraints.

The solution at step h is obtained by computing only the first triplet
(δ1,u1, v1) of singular elements of the SVD ofMh−1 = XT

h−1Yh−1:

(u∗, v∗) = (u1, v1)

Why is this useful ?
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SVD properties

Theorem
Eckart-Young (1936) states that the (truncated) SVD of a given
matrixM (of rank r) provides the best reconstitution (in a least
squares sense) ofM by a matrix with a lower rank k :

min
A of rank k

‖M −A‖
2
F =

∥∥∥∥∥∥∥M −
k∑
`=1

δ`u`vT
`

∥∥∥∥∥∥∥
2

F

=
r∑

`=k+1

δ2
` .

If the minimum is searched for matricesA of rank 1, which are
under the form ũṽT where ũ, ṽ are non-zero vectors, we obtain

min
ũ,ṽ

∥∥∥∥M − ũṽT
∥∥∥∥2

F
=

r∑
`=2

δ2
` =

∥∥∥M − δ1u1vT
1

∥∥∥2
F .



SVD properties

Thus, solving

argmin
ũ,ṽ

∥∥∥∥Mh−1 − ũṽT
∥∥∥∥2

F
(2)

and norming the resulting vectors gives us u1 and v1. This is
another approach to solve the PLS optimization problem.



Towards sparse PLS
I Shen and Huang (2008) connected (2) (in a PCA context) to

least square minimisation in regression:

∥∥∥∥Mh−1 − ũṽT
∥∥∥∥2

F
=

∥∥∥∥∥∥∥∥∥∥vec(Mh−1)︸       ︷︷       ︸
y

− (Ip ⊗ ũ)ṽ︸      ︷︷      ︸
Xβ

∥∥∥∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥∥∥∥vec(Mh−1)︸       ︷︷       ︸
y

− (ṽ ⊗ Iq)ũ︸      ︷︷      ︸
Xβ

∥∥∥∥∥∥∥∥∥∥
2

2

.

↪→ Possible to use many existing variable selection techniques using
regularization penalties.

We propose iterative alternating algorithms to find normed vectors
ũ/‖ũ‖ and ṽ/‖ṽ‖ that minimise the following penalised
sum-of-squares criterion∥∥∥∥Mh−1 − ũṽT

∥∥∥∥2

F
+ Pλ(ũ, ṽ),

for various penalization terms Pλ(ũ, ṽ).

↪→We obtain several sparse versions (in terms of the weights u and
v) of the four methods (i)–(iv).



Towards sparse PLS
I Shen and Huang (2008) connected (2) (in a PCA context) to

least square minimisation in regression:

∥∥∥∥Mh−1 − ũṽT
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− (Ip ⊗ ũ)ṽ︸      ︷︷      ︸
Xβ

∥∥∥∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥∥∥∥vec(Mh−1)︸       ︷︷       ︸
y
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Regularized PLS scalable for BIG-DATA

What happens in a MASSIVE DATA SET context?

Massive datasets. The size of the data is large and analysing it
takes a significant amount of time and computer memory.

Emerson & Kane (2012). Dataset considered large if it exceeds
20% of the RAM (Random Access Memory) on a given machine,
and massive if it exceeds 50%
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Tall Data

Case of a lot of observations: two massive data sets X: n × p matrix
and Y: n × q matrix due to a large number of observations.

We suppose here that n is very large, but not p nor q.

PLS algorithm mainly based on the SVD ofMh−1 = XT
h−1Yh−1:

Dimension ofMh−1: p × q matrix !!

This matrix fits into memory.

But not X nor Y.
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Computation ofM = XTY by chunks

M = XTY =
G∑

g=1

XT
(g)Y(g)

All terms fit (successively) into memory!



Computation
Computation ofM = XTY by chunks using R

I No need to load the big matrices X and Y
I Use memory-mapped files (called “filebacking”) through the

bigmemory package to allow matrices to exceed the RAM size.
I A big.matrix is created which supports the use of shared

memory for efficiency in parallel computing.
I foreach: package for running in parallel the computation ofM

by chunks

Regularized PLS algorithm:

I Computation of the components (“Scores”):

Xu (n × 1) and Yv (n × 1)

I Easy to compute by chunks and store in a big.matrix object.
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Concluding Remarks and Take Home Message

I We were able to derive a simple unified algorithm that perfoms
standard, sparse, group and sparse group versions of the four
classical PLS algorithms (i)–(iv). (And also PLSDA.)

I We used big memory objects, and a simple trick that makes
our procedure scalable to big data (large n).

I We also parallelized the code for faster computation.
I We have also offered a version of this algorithm for any

combination of large values of n, p and q.

sgPLS Available on CRAN

sgsPLS and bigsgPLS Available now on GITHUB:

library(devtools)
install_github("sgsPLS","bigsgPLS", "matt-sutton")
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