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Monte Carlo simulation studies

Monte Carlo simulation studies are computer
experiments that involve generating data by
pseudo‑random sampling.
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The Process

In a simulation study, we:

1. Generate data from a known distribution (so that we know the “truth”);

2. Analyse the data;

3. Compare the analysis results with the truth.
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Monte Carlo simulation studies are useful…

Monte Carlo simulation studies provide an invaluable tool for statistical and
biostatistical research.

They can also help to answer questions such as:
• Is an estimator biased in a finite sample?
• Do confidence intervals for a given parameter achieve the desired nominal
level of coverage?
• How does a newly developed method compare to an established one?
• What is the power to detect a desired effect size under complex
experimental settings and analysis methods?
• You name it!
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…and increasingly popular!
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There are issues…

1. Monte Carlo standard errors of performance measures are often not
computed/reported;

2. Reproducibility of results;

3. Dissemination of results.
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Disclaimer!

I will not cover how to plan, design, and run a Monte Carlo simulation study.
An full example on modelling survival data is included with rsimsum:

vignette(”relhaz”, package = ”rsimsum”)

Also, check out the tutorial paper by Morris et al. (2019).
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Enter rsimsum

Why yet another R package?

• There is a similar package in Stata, but nothing comparable in R (that I
know);
• Several performance measures are supported ‑ no need to do tedious
(and error‑prone) calculations by hand;
• Monte Carlo standard errors are computed and displayed by default;
• Several quick plotting options for fast iteration/exploration.
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rsimsum's main function: simsum

args(rsimsumఃఄsimsum)

## function (data, estvarname, true, se, methodvar = NULL, ref = NULL,
## by = NULL, ci.limits = NULL, dropbig = FALSE, x = FALSE,
## control = list())
## NULL

Documentation: https://ellessenne.github.io/rsimsum/

8 of 34

https://ellessenne.github.io/rsimsum/


Example: t‑test (1)

Aim: investigate the performance of the two‑sample t‑test when
1. Data is skewed;
2. Variances are unequal in the two groups.
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Example: t‑test (2)

Data‑generating mechanisms (DGMs):
1. Simulating 60 observations, with 2:1 groups ratio;
2. Fully fractional design, varying equal/unequal variance, and
skewed/non‑skewed data.

Methods:
1. t‑test with pooled variance;
2. t‑test with non‑pooled variance.
Replications: 2,000 per DGM.
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Case study: data

dplyrఃఄglimpse(data)

## Observations: 16,000
## Variables: 8
## $ diff <dbl> -2.802464229, -0.079683569, -2.802464229, -0.079683569, -1.7...
## $ se <dbl> 1.279933, 2.218313, 1.197805, 2.947133, 1.363249, 1.723423, ...
## $ df <dbl> 58.00000, 58.00000, 46.14587, 22.18708, 58.00000, 58.00000, ...
## $ i <int> 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, ...
## $ dgm <fct> ”Equal, Non-skewed”, ”Unequal, Non-Skewed”, ”Equal, Non-skew...
## $ method <fct> t-test (P), t-test (P), t-test (NP), t-test (NP), t-test
(P)...
## $ dist <fct> N, N, N, N, Gamma, Gamma, Gamma, Gamma, N, N, N, N, Gamma, G...
## $ var <fct> Equal, Unequal, Equal, Unequal, Equal, Unequal, Equal, Unequ...
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Summarising a simulation study (1)
s <- rsimsumఃఄsimsum(

data = data, estvarname = ”diff”, se = ”se”, true = -1, methodvar = ”method”,
by = ”dgm”, ref = ”t-test (NP)”, x = TRUE

)
s

## Summary of a simulation study with a single estimand.
##
## Method variable: method
## Unique methods: t-test (NP), t-test (P)
## Reference method: t-test (NP)
##
## By factors: dgm
##
## Monte Carlo standard errors were computed.
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Summarising a simulation study (2)

summary(s, stats = ”bias”)

## Values are:
## Point Estimate (Monte Carlo Standard Error)
##
## Bias in point estimate:
## dgm t-test (NP) t-test (P)
## Equal, Non-skewed 0.0054 (0.0302) 0.0054 (0.0302)
## Unequal, Non-Skewed -0.0461 (0.0547) -0.0461 (0.0547)
## Equal, Skewed -0.0610 (0.0300) -0.0610 (0.0300)
## Unequal, Skewed -0.0258 (0.0533) -0.0258 (0.0533)
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Summarising a simulation study (3)

summary(s, stats = ”cover”)

## Values are:
## Point Estimate (Monte Carlo Standard Error)
##
## Coverage of nominal 95% confidence interval:
## dgm t-test (NP) t-test (P)
## Equal, Non-skewed 0.9590 (0.0044) 0.9600 (0.0044)
## Unequal, Non-Skewed 0.9350 (0.0055) 0.8725 (0.0075)
## Equal, Skewed 0.9495 (0.0049) 0.9525 (0.0048)
## Unequal, Skewed 0.9290 (0.0057) 0.8770 (0.0073)
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Performancemeasures implemented in rsimsum

The following performance measures are implemented in rsimsum:
• Bias;
• Empirical SE, relative % increase in precision, model‑based SE, and
relative % error in model‑based SE;
• Mean squared error (MSE);
• Coverage probability and bias‑corrected coverage probability;
• Power of type I error.

Each performance measure is described in more detail elsewhere (Morris et
al., 2019).
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Plotting point estimates
autoplot(object = s, type = ”est”)
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Plotting standard errors
autoplot(object = s, type = ”se”)
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Plotting standard errors
autoplot(object = s, type = ”se_ba”)
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Plotting standard errors
autoplot(object = s, type = ”se_ridge”)

Equal, Non-skewed

Equal, Skewed

Unequal, Non-Skewed

Unequal, Skewed

2 4 6

se

method

t-test (NP)

t-test (P)

19 of 34



Plotting results
autoplot(object = summary(s), type = ”forest”, stats = ”bias”)
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Plotting results
autoplot(object = summary(s), type = ”lolly”, stats = ”cover”)

(

(

)

)

(

(

)

)

(

(

)

)

(

(

)

)

dgm: Equal, Skewed dgm: Unequal, Skewed

dgm: Equal, Non-skewed dgm: Unequal, Non-Skewed

0.875 0.900 0.925 0.950 0.875 0.900 0.925 0.950

t-test (NP)

t-test (P)

t-test (NP)

t-test (P)

cover

m
e

th
o

d

21 of 34



Plotting results
autoplot(object = s, type = ”zip”)
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Plotting results
autoplot(object = s, type = ”heat”, stats = ”power”)
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Plotting results
autoplot(object = s, type = ”heat”, stats = ”power”) +

viridisఃఄscale_fill_viridis() +
ggplot2ఃఄtheme_minimal(base_family = ”Iosevka Slab”)
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Multiple estimands

args(rsimsumఃఄmultisimsum)

## function (data, par, estvarname, true, se, methodvar = NULL,
## ref = NULL, by = NULL, ci.limits = NULL, dropbig = FALSE,
## x = FALSE, control = list())
## NULL
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INTEREST

INteractive Tool for Exploring
REsults from Simulation sTudies
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INTEREST: Why?

Why a Shiny app?

• Dissemination of results and open science;
• Fast(er) iteration and exploration of results;
• Supporting devices where R does not run natively (smartphones,
Chromebooks, …).
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Dissemination is key

1. Can drive practitioners and applied statisticians to methods that have
been shown to perform well in their practical settings;

2. Can guide researchers to develop new methods in promising directions;
3. Can provide insights into less established methods.
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INTEREST: Homepage
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INTEREST: Workflow

Customise	and
export	summaries,

plots,	tables

Outputs	are
updated

automatically

Vary	data-
generating	factors

Upload
Data

1.	Summary	statistics	are	computed	automatically
2.	Factors	defining	data-generating	factors	are	inferred
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INTEREST: Demo

http://interest.shinyapps.io/interest/
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How to get rsimsum and INTEREST?

rsimsum can be installed directly from CRAN:

install.packages(”rsimsum”)
# Development version on GitHub:
# require(”remotes”)
# remotesఃఄinstall_github(repo = ”ellessenne/rsimsum”)

INTEREST is on GitHub:

# require(”remotes”)
remotesఃఄinstall_github(repo = ”ellessenne/interest”)

32 of 34



What is coming next?

rsimsum:
• Nested loop plot for simulation studies with several DGMs (Rücker and
Schwarzer, 2014);
• Methods to easily reproduce plots generated by autoplot;
• Methods to directly export (pretty) LATEX tables;
• …

INTEREST:
• Additional exporting tools for INTEREST;
• Support for simulation studies with multiple estimands in INTEREST;
• …
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Thank you!
References:
• Using simulation studies to evaluate statistical
methods. Morris TP, White IR, and Crowther MJ (2019).
Statistics in Medicine 38(11):2074–2102, DOI:
10.1002/sim.8086
• rsimsum: Summarise results from Monte Carlo
simulation studies. Gasparini A (2018). Journal of Open
Source Software 3(26):739, DOI: 10.21105/joss.00739
• rsimsum’s website:
https://ellessenne.github.io/rsimsum/

Slides available online: https://tinyurl.com/useR-2019
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