



# Random forests for time series

Benjamin GOEHRY, Hui YAN, Yannig GOUDE, Pascal MASSART, Jean-Michel POGGI

EDF Lab & Univ. Paris-Sud

- 1. Standard random forests
- 2. Adaptation to time series
- 3. Application to load forecasting & Conclusion

## Standard random forests

We have some stationary data set  $\mathcal{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n)), (X_i, Y_i) \in \mathbb{R}^p \times \mathbb{R}$  and

$$Y = f(X) + \epsilon$$

Goal: estimate the regression function *f*.

How: random forests

#### Random forest? Regression tree



A partitioning of  $[0, 1]^2$  and the associated binary tree.

Parameters: number of trees *M*, number of observations per tree  $\alpha_n$ , size of the random set of variables  $m_{try}$ 

Repeat for each tree:

- Draw randomly α<sub>n</sub> ≤ n points among the n points with or without replacement.
- Repeat recursively at each node:
  - choose a random set of *m*<sub>try</sub> variables among the *p* variables and apply the CART criterion on this subset.
  - Cut on the best split.

Breiman L. Random forests. 2001.

## Key step: bootstrapping

Randomly drawing  $\alpha_n \leq n$  observations with replacement.

Pros: adapted to i.i.d observations. Cons: destroys the underlying structure.

Example:



Adaptation to time series

## Solution: Block bootstrap

Replace the standard bootstrap with a block bootstrap variant to subsample time series during the tree construction phase

→ Dependence structure preserved.



Example:

Original load.

Bootstrapped load.

24h block bootstrapped

Parameters: number of trees *M*, number of observations per tree  $\alpha_n$ , size of the random set of variables  $m_{try}$ , block size  $l_n$ 

Repeat for each tree:

- Draw  $\alpha_n \leq n$  observations using a block bootstrap variant with parameter  $l_n$ .
- Repeat recursively at each node:
  - chose a random set of *m*<sub>try</sub> variables among the *p* variables and apply the CART criterion on this subset.
  - Cut on the best split.

#### Block bootstrap variants

Non-overlapping block bootstrap<sup>1</sup>



Moving block bootstrap<sup>2</sup>



<sup>1</sup>E. Carlstein. The use of subseries values for estimating the variance of a general statistic from a stationary sequence. 1986.

<sup>2</sup>H.R. Kunsch, The jackknife and the bootstrap for general stationary observations. 1989. R.Y. Liu, et al. Moving blocks jackknife and bootstrap capture weak dependence. 1992. Existing packages for trees/RF: party, rpart, randomForest, ranger<sup>3</sup>, etc. We propose an extension of *ranger* called rangerts.

New code parameters:

- bootstrap.ts: "circular", "moving", "non-overlap" (and others)
- block.size: number of consecutive observations per block
- by.end: build blocks by the end of the series or not
- period: seasonality period (only for seasonal variant)

Code example:

```
forest_ts \leftarrow ranger(Y \sim ., data, bootstrap.ts = "moving", block.size = l_n)
forecast_ts \leftarrow predict(forest_ts, data_test)$prediction
```

<sup>&</sup>lt;sup>3</sup>Wright, M. N., Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. 2017.

# Application to load forecasting & Conclusion

#### Dataset, goal & model

Dataset: load of a building called *UnivLab Patrick*<sup>4</sup>. One observation per hour over one year. Access to the temperature and schedule.

Training January-October, validation November, test December.

Goal: Load forecasting at a 24 hour horizon  $Y_t$ .

#### Predictor variables:

- Y<sub>t-24</sub> & Y<sub>t-7×24</sub>;
- Temp<sub>t</sub>;
- Schedule<sub>t</sub>;
- Hour<sub>t</sub>, InstantWeek<sub>t</sub>, DayType<sub>t</sub>, Toy<sub>t</sub>.



Weekly load profile

<sup>&</sup>lt;sup>4</sup>C. Miller, F. Meggers. The building data genome project: An open, public data set from non-residential building electrical meters. 2017

#### Comparison to the standard random forest



Performance of the variants for  $m_{try} = 2$ .

Evolution of the performance for each variant according the block length  $l_n$ .

- Introduced a new way to incorporate the dependence structure in random forests.
- Improve the performance over the standard random forests.
- 🖙 Variable importance can also be redefined.

#### References

- \* L. Breiman. Random forests. Machine learning, 2001.
- E. Carlstein. The use of subseries values for estimating the variance of a general statistic from a stationary sequence. Ann. Statist., 1986.
- H.R. Kunsch. The jackknife and the bootstrap for general stationary observations. Ann. Statist., 1989.
- R.Y. Liu, et al. Moving blocks jackknife and bootstrap capture weak dependence. Wiley, New York, 1992.

- C. Miller, F. Meggers, The building data genome project: An open, public data set from non-residential building electrical meters. *Energy Procedia*, 2017.
- \* D.N Politis, J. Romano, A circular block-resampling procedure for stationary data. *Wiley, New York,* 1992.
- Wright, M. N., Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw, 2017.

Random forests can be used to compute the variable importance.

Mean Decrease Accuracy: if a variable is not important, then permuting its value should not change prediction accuracy. The importance of the variable  $X^{(j)}$  is defined by



Breiman L. Random forests. 2001.

#### Standard variable importance vs Block variable importance



Non-overlapping standard variable importance

Non-overlapping block variable importance with  $l_n = 24$ .

#### Software aspect in R (help)

ranger(formula = NULL, data = NULL, num.trees = 500, mtry = NULL, importance = "none", write.forest = TRUE, probability = FALSE, min.node.size = NULL, max.depth = NULL, replace = TRUE, sample.fraction = ifelse(replace, 1, 0.632), case.weights = NULL, class.weights = NULL, splitrule = NULL, num.random.splits = 1, alpha = 0.5, minprop = 0.1, split.select.weights = NULL, always.split.variables = NULL, respect.unordered.factors = NULL, scale.permutation.importance = FALSE, keep.inbag = FALSE, inbag = NULL, holdout = FALSE, quantreg = FALSE, oob.error = TRUE, num.threads = NULL, save.memory = FALSE, verbose = TRUE, seed = NULL, dependent.variable.name = NULL, status.variable.name = NULL, classification = NULL, bootstrap.ts = NULL, by.end = TRUE, block.size = 10, period = 1)

#### New ranger function with all the parameters

| bootstrap.ts | Bootstrapping mode : empty for iid observations, "nonoverlapping" is default,<br>"moving" for moving blocks, "circular" for circular blocks, "stationary" for stationary<br>blocks, and "seasonal" for seasonal blocks. |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| by.end       | Logical. Build block by the end of time series or not. Default = TRUE.                                                                                                                                                  |
| block.size   | Number of observations in one block only if bootstrap by block is activated (bootstrap.ts has non null value).                                                                                                          |
| period       | Number of steps of one period. Only for the 'seasonal' block bootstrap.                                                                                                                                                 |

#### The new parameters