geotopbricks
An R Package for the Distributed Hydrological Model GEOtop

Emanuele Cordano (Rendena100)
github.com/ecor

Giacomo Bertoldi, Elisa Bortoli (EURAC Ecohydro)
github.com/Ecohydro
Who are we?

▶ Environmental engineers with hydrological background (more deterministic and physically-based than statics!)
▶ Some of us are researchers, other are self-employed and freelancers - www.rendena100.eu. Some of us are authors of several R-packages and R enthusiast.
▶ Some of us are developers of GEOtop hydrologic models with skills in hydrology, environmental science and also in C/C++, parallel programming, High Performance Computing, etc.
Hydrology

Scientific study of the movement, distribution, and quality of water, including the water cycle, water resources and environmental watershed sustainability. [Wikipedia]
Hydrological Models

Models that estimate water river discharge, soil water content, evapotranspiration, etc. (output) in function of weather forcings and soil/land/geomorphological characterization (input).

Soil water mass balance equation: \(\frac{\partial \theta}{\partial t} = \nabla \cdot [K(\nabla(\psi + z_f))] + S \)

Soil Heat (energy) balance equation: \(C_s \frac{\partial T_s}{\partial t} = \nabla \cdot [K_t(\nabla T_s)] + \lambda S \)
GEOtop Hydrological Model

GEOtop hydrological model solves water mass balance and energy balance equations coupled with the exchanges between terrain and lower atmosphere in the following two setup configurations:

- **1D**: only vertical fluxes \rightarrow balances at local scale (only in one soil column)
- **3D**: vertical and lateral fluxes \rightarrow balances at basin scale
GEOtop Hydrological Model Software Package / Source Code

GEOtop Hydrological Model is an open source software package (GPL3 licence):

► written in C/C++
► released in 2014 (version 2.0) as free open-source project, a re-engineering process is going to finish (version 3.0);
► scientifically tested and published;

Source code and documentation are available on GitHub repository: http://geotopmodel.github.io/geotop/.

Water Resources Research

RESEARCH ARTICLE 10.1002/2016WR019191

The integrated hydrologic model intercomparison project, IH-MIP2: A second set of benchmark results to diagnose integrated hydrology and feedbacks

Stefan Kollet1,2, Mauro Sulis3, Reed M. Maxwell4, Claudio Paniconi5, Mario Putti6, Giacomo Portoli7, Ethan T. Coon8, Emanuele Cordano7,9, Stefano Endrizzi10, Eugeny Kikinzon10,
geotopbricks R Package: Why?

- complexity in input/output/configuration files ("frontend") and data difficult to handle
- need of user friendly environment for to GEOtop data tidying and data analytics (e.g. R)
GEOtop Simulation Configuration File (geotop.inpts)

GEOtop simulation is a directory containing a configuration file, called geotop.inpts filled with a keywords system addressing to simulation options (e.g. simulation period); input files (e.g. meteorological forcings, soil and geomorphology of the basin); output files (spatio-temporal maps - raster and time series - of the results).

InitDateDDMMYYYYhhmm=09/04/2014 18:00
EndDateDDMMYYYYhhmmm =01/01/2016 00:00
[...]
MeteoFile ="meteoB2_irr"
PointOutputFile ="tabs/point"
The aim of **geotopbricks**, starting in 2013, is to import all GEOtop simulation data into the R environment by using the *keyword-value* syntax of *geotop.inpts*. **geotopbricks** does the following actions:

- parsing *geotop.inpts* configuration file;
- deriving from *geotop.inpts*'s keywords the source files of I/O data;
- importing time series (e.g. precipitation, temperature, soil water content, snow) as *zoo* or *data.frame* objects;
- importing spatially and spatio-temporal gridded objects as *RasterLayer-class* or *RasterBrick-class* objects (**raster** package).
1D GEOtop Simulation in an Alpine Site: 2 Points

Estimation of soil water content (SWC) in two points P2 and B2 located in Val Mazia/Matsch, South Tyrol, Italy
1D GEOtop Simulation in an Alpine Site: B2

Here is the directory containing files of B2 point simulation:

```r
library(geotopbricks)
```

```
## SET GEOTOP SIMULATION DIRECTORY
wpath_B2 <- "resources/simulation/Matsch_B2_Ref_007"
```
Getting Simulation Input Data

Meteorological forcings time series are imported and saved as `meteo` variable (class `zoo`). This variable is retrieved through the GEOtop keyword `MeteoFile`:

```r
tz <- "Etc/GMT-1"
meteo <- get.geotop.inpts.keyword.value(
  "MeteoFile",
  wpath=wpath_B2,
  data.frame=TRUE,
  tz=tz)
class(meteo)
```

```r
## [1] "zoo"
```
Getting Simulation Input Data (verify)

Meteorological time series once imported can be printed:

```r
head(meteo[12:14,c("Iprec","AirT","Swglobal")])
```

```plaintext
## Iprec AirT Swglobal
## 2009-10-02 11:00:00 0 12.38 396.02
## 2009-10-02 12:00:00 0 13.12 500.07
## 2009-10-02 13:00:00 0 13.96 564.02
```

```r
head(meteo[12:14,c("RelHum","WindSp","WindDir")])
```
Precipitation and Air Temperature at B2

Air Temperature / Precipitation Intensity vs Time at B2

- Precipitation Intensity [mm/hr]
- Air Temperature [°C]

Time
- May 11
- May 13
- May 15
- May 17
- May 19
- May 21

variable
- Air Temperature
- Precipitation Intensity

useR2019, Toulouse, France
Getting Simulation Output Data

Soil Water Content Profile:

tz <- "Etc/GMT-1"
SWC_B2 <- get.geotop.inpts.keyword.value("SoilLiqContentProfileFile",
 wpath = wpath_B2,
 data.frame = TRUE,
 date_field = "Date12.DDMYYYhhmm.",
 tz = tz,
 zlayer.formatter = "z%04d"
)

help(get.geotop.inpts.keyword.value) ## for more details!
Getting Simulation Output Data (at P2)

Analogously for P2:

```r
wpath_P2 <- "resources/simulation/Matsch_P2_Ref_007"
SWC_P2 <- get.geotop.inpts.keyword.value("SoilLiqContentProfileFile",
    wpath = wpath_P2,
    data.frame = TRUE,
    date_field = "Date12.DDMMYYYhhm",
    tz = "Etc/GMT-1",
    zlayer.formatter = "z%04d")
```
Soil Water Content at P2 and B2

![Graph showing soil water content over time for sites P2 and B2 at different depths.](graph.png)
3D Spatially Distributed Simulation: Val Venosta/Vinschgau - Upper Adige River Basin - Alps - I/CH/A

```r
code: 

wpath_3D <- 'resources/simulation/Vinschgau'
basin <- get.geotop.inpts.keyword.value("LandCoverMapFile", 
                                      wpath=wpath_3D, raster=TRUE)
basin

## class : RasterLayer
## dimensions : 48, 63, 3024 (nrow, ncol, ncell)
## resolution : 1000, 1000 (x, y)
## extent : 598000, 661000, 5145000, 5193000 (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=utm +zone=32 +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0
## data source : in memory
## names : layer
## values : 1, 11 (min, max)
```
Input GeoSpatial Map: Elevation and Weather Station
3D Spatially Distributed Simulation (Output Geospatial Map): Soil Water Content

brickFromOutputSoil3DTensor("SoilLiqContentTensorFile", wpath=wpath_3D, when="2011-08-16 12:00:00 +01")
3D Spatially Distributed Simulation (Output Geospatial Map): Surface Water Discharge at the Outlet

![Graph showing discharge and variables over time]

- Discharge [m^3/s]
- Precipitation − Evapotranspiration [mm/day]

Legend:
- Discharge
- Precipitation
- Evaporation
- Transpiration

Time:
- Jan 2011
- Apr 2011
- Jul 2011
- Oct 2011

UseR2019, Toulouse, France

Discussion

- **geotopbricks** allows graphical representation using R of GEOtop results, useful for hydrologists and researchers;
- Through **geotopbricks** user can interact between R and GEOtop using R environment and GEOtop keywords system, without using the GEOtop simulation structure.
- Processing of a GEOtop simulation is always reproducible for any other simulation; results can be automatically documented in reports or presentations.
Conclusions and Way Forward

- **geotopbricks** is an interface of GEOtop in R speaking the language of GEOtop;
- R code based on **geotopbricks** can help the implementation of further package or apps: analityics, model calibration, visualization.
- Open Source (and not only) Hydrological Model needs powerful interfaces to process I/O in a FAIR way;
Finally

Aknowledgements to

▶ all GEOtop developers and users’ group, in particular Matteo Dall’Amico, Stefano Cozzini, Alberto Sartori, Stefano Endrizzi, Samuel Senoner, Riccardo Rigon, who provided images about GEOtop for this presentation

▶ the community of R whose packages allow to analize and visualise GEOtop data.

If intertested? See and follow us on (www.geotop.org) or (https://cran.r-project.org/package=geotopbricks)

Thank you for your attention! / Merci pour votre attention!
Find us as @ecor (presenter) or @EURAC-Ecohydro (co-authors) on GitHub.
Addendum
GEOtop Hydrological Model Flowchart

- **Input**: meteo data, elevations, soil parameters, ...
- **Output**: snow cover, soil temperature, soil moisture, ...

Input
- Geo-Referenced Maps:
 - Elevation (DTM) (geomorphology)
 - Soil-type Map
 - Land-Use Map (CORINE)
- Weather (Hourly) Data Time Series

Output
- Geo-Referenced Maps:
 - Snow Depth Map
 - Snow Water Equivalent Map
 - Snow Temperature
 - Soil Moisture
 - Soil Temperature
 - Soil Water Pressure
 - Evapotranspiration Maps
 - Water Runoff/Discharge

Flowchart
- Input preparation
- Data preprocessing
- Set counter time to the start date
- Output generation
- Update time counter
- Energy balance
 - Vegetation
 - Snow processes
- Mass balance
 - Water dynamics
- Output maps
- Check time counter
 - Exit if yes
 - Loop if no
Soil Water Pressure Head at P2 and B2

Soil Water Pressure Head [mm]

site
B2
P2

variable
- depth 03 cm
- depth 09 cm
- depth 18 cm
- depth 45 cm

Time
May 11 May 13 May 15 May 17 May 19 May 21

useR2019, Toulouse, France
Example of an Output Data Analytics (Soil Moisture Distribution)

Distribution of daily aggregated soil water content at a 18 cm depth:
Box Plot: Daily Soil Water Content

More details on the eRum2018 poster.