
Resample-smoothing of Voronoi
intensity estimators
Ege Rubak

useR!2019: 11 July 2019

Introduction

The presentation is based on joint work with these great guys:

The results are published in:

M. M. Moradi, et al. (2019) Resample-smoothing of Voronoi intensity estimators,
Statistics and Computing, pp. 1-16. DOI: 10.1007/s11222-018-09850-0

M. Mehdi Moradi (unfortunately denied entrance to France for useR!2019)

Ottmar Cronie

Raphael Lachieze-Rey

Jorge Mateu

Adrian Baddeley

·

·

·

·

·

2/23

Examples of point patterns

Random locations on e.g. the time line (Old Faithful Geyser eruptions), a
network (street crimes around University of Chicago), or a planar region (cancer
cases in part of Lancashire).

3/23

The intensity function

The intensity function controls the expected number of points per unit area.·

4/23

The intensity function

The intensity function controls the expected number of points per unit area.·

5/23

Intensity estimation

The intensity is like a unnormalized density. The integral is the expected
number of points rather than the probabily of outcomes.

All the classical density estimation techniques apply.

Most common non-parametric method is kernel smoothing.

Our starting points is the Voronoi estimator, which is closely related to nearest
neighbour density estimation.

·

·

·

·

6/23

Voronoi intensity estimator

Example with points on the unit interval [0,1].

Cut [0,1] into Voronoi regions closest to each data point and use reciprocal
region size as piecewise constant intensity estimate (think histogram with
varying bin size).

·

·

7/23

Issues with the Voronoi estimator

The Voronoi estimator is approximately unbiased (apart from edge effects),
but the variance is huge.

We propose to reduce the variance (and introduce a bit of bias), by
subsampling.

We first illustrate ideas with deterministic subsampling, but for real data we
use random subsampling.

·

·

·

8/23

Subsampling

Leave out one data point at the time and rescale by n/(n-1).·

9/23

Different levels of subsampling

Final estimate at a given level of subsampling is the average of corresponding
subsampling estimates.

·

10/23

Voronoi intensity estimate of eruptions

11/23

Subsampling smoothed version

12/23

Ties

This is the point where you say: “Wait a minute, you must be cheating! I clearly
remeber the eruption durations in datasets::faithful has ties!”

In case of ties we simply scale the estimate by the number of identical data
points, i.e., we replace 1/size by n/size.

·

·

13/23

Simulation study

As for almost any method, it is possible to construct a simulation study where
smoothed Voronoi outperforms other methods and vice versa.

I will not do that here :-)

Instead we will look a bit at the detail of the implementation.

·

·

·

14/23

Implementation in spatstat package

The starting point of spatstat 20 years ago was 2D planar point patterns
(class ppp) in a given region (observation window – owin).

Data can be imported directly from csv-files etc. or converted from other
formats using sf, sp and maptools.

Here we use a built-in dataset to avoid technicalities.

·

·

·

library(spatstat)

X <- unmark(chorley) # Cancer data without types

print(X)

Planar point pattern: 1036 points

window: polygonal boundary

enclosing rectangle: [343.45, 366.45] x [410.41, 431.79] km

15/23

Planar point patterns in spatstat

methods(class = "ppp")

[1] [[<- affine anyDuplicated

[5] as.data.frame as.im as.layered as.owin

[9] as.ppp auc berman.test boundingbox

[13] boundingcentre boundingcircle boundingradius by

[17] cdf.test circumradius closepairs closing

[21] connected coords coords<- crossdist

[25] crosspairs cut density densityAdaptiveKerne

[29] densityfun densityVoronoi dilation distfun

[33] distmap domain duplicated edit

[37] envelope erosion fardist flipxy

[41] Frame<- has.close head identify

[45] intensity iplot is.connected is.empty

[49] is.marked is.multitype kppm lurking

[53] markformat marks marks<- multiplicity

[57] nnclean nncross nndensity nndist

[61] nnfun nnwhich nobjects npoints

[65] opening pairdist pcf periodify

[69] pixellate plot ppm print 16/23

Tesselations in spatstat

We use deldir to calculate tesselations which have class tess in spatstat:·

tes <- dirichlet(X)

print(tes)

Tessellation

Tiles are irregular polygons

706 tiles (irregular windows)

window: polygonal boundary

enclosing rectangle: [343.45, 366.45] x [410.41, 431.79] km

methods(class = "tess")

[1] [[<- affine as.data.frame as.function as.im

[7] as.owin as.tess connected domain flipxy head

[13] marks marks<- nobjects plot print reflect

[19] rotate scalardilate shift tail unitname unitname<-

[25] unmark unstack Window

see '?methods' for accessing help and source code 17/23

Tesselations in spatstat

plot(tes, main = "")

18/23

Intensity estimation in spatstat

Intensity estimation by kernel smoothing is the default in spatstat. It is a S3
method for density in line with base R, while the new method has its own
generic function densityVoronoi:

·

kde <- density(X, sigma = 1)

vor100 <- densityVoronoi(X, f = 1.0)

vor05 <- densityVoronoi(X, f = 0.05, nrep = 100, verbose = FALSE)

19/23

Linear networks in spatstat

More recently support for linear networks have been added to spatstat.

Linear networks are like graphs, but less general, since they are embedded in
space and positions of vertices have meaning.

·

·

X <- unmark(chicago) ## Chicago street crime without types

X

Point pattern on linear network

116 points

Linear network with 338 vertices and 503 lines

Enclosing window: rectangle = [0.3894, 1281.9863] x [153.1035, 1276.5602] feet

20/23

Linear networks in spatstat

[1] [affine as.linnet as.owin as.ppp as.psp

[7] auc berman.test boundingbox cdf.test connected crossdist

[13] cut deletebranch density densityVoronoi distfun domain

[19] envelope extractbranch identify intensity iplot is.multitype

[25] lppm marks<- nncross nndist nnfun nnwhich

[31] nsegments pairdist plot points print rescale

[37] rhohat roc rotate scalardilate shift subset

[43] summary superimpose text uniquemap unitname unitname<-

[49] unmark unstack Window Window<-

see '?methods' for accessing help and source code

21/23

Linear network tesselations in spatstat

Xsmall <- X[sample(npoints(X), size = 6)]

tes <- lineardirichlet(Xsmall)

plot(tes, main = "")

plot(Xsmall, add = TRUE, show.network = FALSE)

22/23

Voronoi estimation on linear networks

est <- densityVoronoi(X, f = 0.05, nrep = 500)

plot(est, style = "width", main = "")

23/23

