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Motivating example

= Meet Justin.
= Age: 56
= Worried about his prostate.
= What is Justin's two year risk of death due to prostate cancer?
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Popular methods in time-to-event analysis

= |n disease etiology, we tend to make use of the proportional
hazards hypothesis.
= Cox Regression
= When we want the absolute risk:

= Parametric models
= Breslow estimator
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Motivations for a new method

= Julien and Hanley found that survival analysis rarely produces
prognostic functions, even though the software is widely
available in cox regression packages. [1]

= They believe the stepwise nature is the reason, as it reduces
interpretability. [1]

= Want to easily model non-proportional hazards. [1]

= A streamlined approach for reaching a smooth absolute risk
curve. [1]



Dr. Cox’s perspective

Reid: How do you feel about the cottage industry that’s grown
up around it [the Cox model]?

Cox: Don’t know, really. In the light of some of the further
results one knows since, I think I would normally want to tackle
problems parametrically, so I would take the underlying hazard
to be a Weibull or something. I'm not keen on nonparametric
formulations usually.

Reid: So if you had a set of censored survival data today, you
might rather fit a parametric model, even though there was a
feeling among the medical statisticians that that wasn’t quite
right.

Cox: That’s right, but since then various people have shown that
the answers are very insensitive to the parametric formulation of
the underlying distribution [see, e.g., Cox and Oakes, Analysis
of Survival Data, Chapter 8.5]. And if you want to do things
like predict the outcome for a particular patient, it’s much more
convenient to do that parametrically.



European Randomized Study of Prostate Cancer Screening

(ERSPC) Data

= ~150 000 men ages 55-69. [4]
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European Randomized Study of Prostate Cancer Screening

(ERSPC) Data

= ~150 000 men ages 55-69. [4]
= Examined effects screening has on death due to prostate
cancer. [4]
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ERSPC Data

head (casebase: :ERSPC)

PatientID ScrArm  Follow.Up.Time DeadOfPrCa

1 1 0.003 0
2 0 1.038 1
3 1 7.966 1
4 0 11.975 1
5 1 14.910 0




Recall

= Using the ERSPC dataset and casebase, we will
determine Justin’s absolute risk for death by prostate
cancer.
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Casebase Overview

1. Clever sampling.

2. Allows a parametric fit using logistic regression.

= Casebase is parametric, and allows different parametric fits by
incorporation of the time component.

= Package contains an implementation for generating
population-time plots.
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Casebase: Sampling [5]
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Casebase: Sampling

casebase: :popTime (Data,Event,Time)
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Casebase: Sampling [3]
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Casebase: Parametric families

= We can now fit models of the form: [1]
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Casebase: Parametric families

= We can now fit models of the form: [1]

log(h(t; , B)) = g(t; a) + BX

= By changing the function g(t; &), we can model different
parametric families easily:
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Casebase: Parametric models

Exponential: g(t; «) is equal to a constant

casebase: :fitSmoothHazard(status ~ X1 + X2)

Gompertz: g(t; ) = at

casebase: :fitSmoothHazard(status ~ time + X1 + X2)

Weibull: g(t; o) = alog(t)

casebase: :fitSmoothHazard(status ~ log(time) + X1 + X2)
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Death by prostate cancer: hazard ratios

casebase: :fitSmoothHazard (Dead0fPrCa~ log(Follow.Up.Time)+
ScrArm, data=ERSPC, ratio = 100)

call:
gIlm(formula = formula, family = binomial, data = sampleData)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.2693 -0.1715 -0.1348 -0.0908 4.5189

coefficients:
Estimate Sstd. Error z value Pr(>|zl|)

(Intercept) -9.46535 0.15812 -59.862 <2e-16 ***
Tog(Follow.Up.Time) 1.08124 0.08264 13.084 <2e-16 ***
ScrArm -0.20833 0.08859 -2.352 0.0187 *
signif. codes: 0 ‘***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6059.0 on 54539 degrees of freedom
Residual deviance: 5794.1 on 54537 degrees of freedom
AIC: 5800.1

. . . . 17
Number of Fisher Scoring iterations: 8



ERSPC Hazard comparison

Model Hazard Ratio Std.Error
Cox 0.801 1.092
Gompertz 0.802 1.093
Exponential 0.810 1.092

Weibull 0.797 1.093
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Absolute Risk

= We have parametric hazard models now.

= To get the absolute risk, we need to evaluate the following
equation in relation to the hazard:

Cl(x, t) = 1 — &~ Jo Hoxu)du

= Cl(x,t)= Cumulative Incidence (Absolute Risk)
= h(x,u)= Hazard function

= Lets use the weibull hazard.
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Casebase: Absolute Risk comparison

casebase: :absoluteRisk(fit, time=2, covariate_profile)

Estimated Cumulative Incidence (risk) With No Screening
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= Casebase sampling permits the use of GLMs and the tools
associated with them
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= Casebase sampling permits the use of GLMs and the tools
associated with them
= The casebase package contains tools to generate:
= Population-Time plots
= Hazard functions
= Absolute Risk
= Flexible fits through splines.

= Casebase can deal with competing risks.
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Tutorial and Slides

Tutorial:
http://sahirbhatnagar.com/casebase/
Slides:
https://github.com/Jesse-Islam /UseR—CaseBase-Presentation

Questions?
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Competing Risks: Data

= Two diseases:
= Acute Lymphoblastic Leukemia (ALL)
= Acute Myeloblastic Leukemia (AML)

= Contains a competing event.

head(casebase: :bmtcrr)

D Status ftime
ALL 2 0.67
AML 1 9.50
ALL 0 131.77
ALL 2 2403

27



Competing Risks: Absolute Risk

fit_cb <- casebase::fitSmoothHazard(Status ~ ftime
+ ... , data =
bmtcrr)
risk_cb <- absoluteRisk(fit_cb, Time, Newdata)
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Competing Risks: Absolute Risk

Method Case-base === Fine-Gray == Kaplan-Meier
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