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Motivating example

• Meet Justin.

• Age: 56
• Worried about his prostate.
• What is Justin’s two year risk of death due to prostate cancer?
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Popular methods in time-to-event analysis

• In disease etiology, we tend to make use of the proportional
hazards hypothesis.

• Cox Regression

• When we want the absolute risk:

• Parametric models
• Breslow estimator

3



Popular methods in time-to-event analysis

• In disease etiology, we tend to make use of the proportional
hazards hypothesis.

• Cox Regression

• When we want the absolute risk:

• Parametric models
• Breslow estimator

3



Popular methods in time-to-event analysis

• In disease etiology, we tend to make use of the proportional
hazards hypothesis.

• Cox Regression

• When we want the absolute risk:

• Parametric models
• Breslow estimator

3



Popular methods in time-to-event analysis

• In disease etiology, we tend to make use of the proportional
hazards hypothesis.

• Cox Regression

• When we want the absolute risk:
• Parametric models

• Breslow estimator

3



Popular methods in time-to-event analysis

• In disease etiology, we tend to make use of the proportional
hazards hypothesis.

• Cox Regression

• When we want the absolute risk:
• Parametric models
• Breslow estimator

3



Motivations for a new method

• Julien and Hanley found that survival analysis rarely produces
prognostic functions, even though the software is widely
available in cox regression packages. [1]

• They believe the stepwise nature is the reason, as it reduces
interpretability. [1]

• Want to easily model non-proportional hazards. [1]
• A streamlined approach for reaching a smooth absolute risk

curve. [1]
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Dr. Cox’s perspective
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European Randomized Study of Prostate Cancer Screening
(ERSPC) Data

• ~150 000 men ages 55-69. [4]

• Examined effects screening has on death due to prostate
cancer. [4]
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ERSPC Data

head(casebase::ERSPC)

PatientID ScrArm Follow.Up.Time DeadOfPrCa

1 1 0.003 0
2 0 1.038 1
3 1 7.966 1
4 0 11.975 1
5 1 14.910 0
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Recall

• Using the ERSPC dataset and casebase, we will
determine Justin’s absolute risk for death by prostate
cancer.
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Casebase Overview

1. Clever sampling.

2. Allows a parametric fit using logistic regression.

• Casebase is parametric, and allows different parametric fits by
incorporation of the time component.

• Package contains an implementation for generating
population-time plots.
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Casebase: Sampling [5]
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Casebase: Sampling

casebase::popTime(Data,Event,Time)
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Casebase: Sampling [3]
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Casebase: Parametric families

• We can now fit models of the form: [1]

log(h(t;α, β)) = g(t;α) + βX

• By changing the function g(t;α), we can model different
parametric families easily:
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Casebase: Parametric models

Exponential: g(t;α) is equal to a constant

casebase::fitSmoothHazard(status ~ X1 + X2)

Gompertz: g(t;α) = αt

casebase::fitSmoothHazard(status ~ time + X1 + X2)

Weibull: g(t;α) = αlog(t)

casebase::fitSmoothHazard(status ~ log(time) + X1 + X2)
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Death by prostate cancer: hazard ratios

casebase::fitSmoothHazard(DeadOfPrCa~ log(Follow.Up.Time)+
ScrArm, data=ERSPC, ratio = 100)
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ERSPC Hazard comparison

Model Hazard Ratio Std.Error

Cox 0.801 1.092
Gompertz 0.802 1.093
Exponential 0.810 1.092
Weibull 0.797 1.093
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Absolute Risk

• We have parametric hazard models now.

• To get the absolute risk, we need to evaluate the following
equation in relation to the hazard:

CI(x , t) = 1 − e−
∫ t

0 h(x ,u)du

• CI(x,t)= Cumulative Incidence (Absolute Risk)
• h(x,u)= Hazard function
• Lets use the weibull hazard.
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Casebase: Absolute Risk comparison

casebase::absoluteRisk(fit, time=2, covariate_profile)
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Summary

• Casebase sampling permits the use of GLMs and the tools
associated with them

• The casebase package contains tools to generate:

• Population-Time plots
• Hazard functions
• Absolute Risk

• Flexible fits through splines.
• Casebase can deal with competing risks.
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Tutorial and Slides

Tutorial:

http://sahirbhatnagar.com/casebase/

Slides:

https://github.com/Jesse-Islam/UseR–CaseBase-Presentation

Questions?
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APPENDIX
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Competing Risks

• Current methods:

• Fine-Gray
• Kaplan-Meier

• Proposed method:

• Case-Base
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Competing Risks: Data

• Two diseases:

• Acute Lymphoblastic Leukemia (ALL)
• Acute Myeloblastic Leukemia (AML)

• Contains a competing event.

head(casebase::bmtcrr)

D Status ftime

ALL 2 0.67
AML 1 9.50
ALL 0 131.77
ALL 2 24.03
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Competing Risks: Absolute Risk

fit_cb <- casebase::fitSmoothHazard(Status ~ ftime
+ ... , data =
bmtcrr)

risk_cb <- absoluteRisk(fit_cb, Time, Newdata)
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Competing Risks: Absolute Risk
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